NumPy
图灵的狗
这个作者很懒,什么都没留下…
展开
-
Pandas数据处理总结 (手册3.3)
Pandas数据处理总结 (手册3.3)注:转载请注明出处文章目录Pandas数据处理总结 (手册3.3)数据取值与选择(3.3)Series数据选择方法(3.3.1)(1)将Series看作字典·通过键值对的映射·用Python字典的表达式和方法来检测键和索引的值·用字典语法调整数据(2)将Series看作是一个数组(3)索引器:loc, iloc和ixDataFrame数据选择方法(3.3.2)(1)将DataFrame看作字典·对列名进行字典形式的取值获取数据。·用属性形式选择纯字符串列名的数据(原创 2020-08-25 19:41:33 · 406 阅读 · 0 评论 -
Pandas数据处理总结 (手册3.1-3.2)
Pandas数据处理总结 (手册3.1-3.2)在NumPy和它的ndarray对象中, 为多维数组提供了高效的存储和处理方法.。Pandas是在NumPy基础上建立的新程序库,提供了高效的DataFrame数据结构。DataFrame本质上是一种带行标签和列标签、支持相同类型数据和缺失值的多维数组。此外,还有Series和index。注:转载请注明出处文章目录Pandas数据处理总结 (手册3.1-3.2)Pandas安装(3.1)Pandas对象介绍(3.2)Pandas的 Series对转载 2020-08-25 10:57:02 · 525 阅读 · 0 评论 -
NumPy总结(二):基本的NumPy数组操作
NumPy总结(二):基本的NumPy数组操作注:转载请注明出处文章目录NumPy总结(二):基本的NumPy数组操作1 NumPy数组的属性2 数组索引:获取单个元素3 数组切片(slice):获取子数组4 数组的变形5 数组的拼接和分裂5.1 数组的拼接5.2 数组的分裂相关参考资料1 NumPy数组的属性(1)随机种子值: np.random.seed( ):使用NumPy的随机数生成器时进行设置,以确保每次都可以生成同样的随机数组。np.random.seed(0) #设置随机数种原创 2020-08-22 11:10:46 · 729 阅读 · 0 评论 -
NumPy总结(一):创建一个NumPy数组
本节为NumPy的第一部分,主要讲解NumPy的主要功能及基本特性,最重要的是如何创建一个简单的NumPy数组。原创 2020-08-21 12:49:36 · 3486 阅读 · 0 评论