给你一个 m * n 的矩阵,矩阵中的元素不是 0 就是 1,请你统计并返回其中完全由 1 组成的 正方形 子矩阵的个数。
示例 1:
输入:matrix =
[
[0,1,1,1],
[1,1,1,1],
[0,1,1,1]
]
输出:15
解释:
边长为 1 的正方形有 10 个。
边长为 2 的正方形有 4 个。
边长为 3 的正方形有 1 个。
正方形的总数 = 10 + 4 + 1 = 15.
思路:遍历这个二维数组,我们把每一个数字都作为一个正方形的右下角,若该节点为1, 如果能构成一个边长为1 的正方形,则该点为1,表示只有1 个正方形,即本身。如果能构成变成为2 的正方形,则该点为2,表示有2个正方形,本身一个和边长为2的一个。
以此类推。这里使用动态规划来节省降低复杂度,dp[i][j]
表示以(i,j)为右下角的正方形的长度,dp[i][j]=Math.min(dp[i-1][j],dp[i-1][j-1],dp[i][j-1])
前提 matrix[i][i]==1
public int countSquares(int[][] matrix) {
int[][