每日一题:LeetCode之统计全为1的正方形子矩阵

这道题目要求计算一个m*n矩阵中全由1组成的正方形子矩阵的数量。给出的示例展示了一个3*4的矩阵,并给出了不同边长正方形的计数方式。解题思路涉及遍历矩阵并使用动态规划,以每个1为正方形的右下角,根据其位置确定可以构成的不同大小的正方形数量。
摘要由CSDN通过智能技术生成

给你一个 m * n 的矩阵,矩阵中的元素不是 0 就是 1,请你统计并返回其中完全由 1 组成的 正方形 子矩阵的个数。

示例 1:

输入:matrix =
[
[0,1,1,1],
[1,1,1,1],
[0,1,1,1]
]
输出:15
解释:
边长为 1 的正方形有 10 个。
边长为 2 的正方形有 4 个。
边长为 3 的正方形有 1 个。
正方形的总数 = 10 + 4 + 1 = 15.

思路:遍历这个二维数组,我们把每一个数字都作为一个正方形的右下角,若该节点为1, 如果能构成一个边长为1 的正方形,则该点为1,表示只有1 个正方形,即本身。如果能构成变成为2 的正方形,则该点为2,表示有2个正方形,本身一个和边长为2的一个。
以此类推。这里使用动态规划来节省降低复杂度,dp[i][j]表示以(i,j)为右下角的正方形的长度,dp[i][j]=Math.min(dp[i-1][j],dp[i-1][j-1],dp[i][j-1]) 前提 matrix[i][i]==1

public int countSquares(int[][] matrix) {
   
        
        int[][
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值