【3月打卡】Leetcode-994 腐烂的橘子

本文探讨了橘子腐烂问题的解决方法,通过使用多源广度优先搜索(BFS)算法,详细解释了如何计算所有新鲜橘子完全腐烂所需的时间。文章提供了完整的代码实现,包括初始化橘子状态、遍历矩阵以及更新腐烂橘子的过程。

人是会成长的生物。
终于我也从不会写BFS和DFS,变成一个没有感情的遍历矩阵机器

多源广度优先搜索

num表示橘子数(腐烂+新鲜)。
用size=que.size();限制同一层次(分钟)的腐烂橘子,用于控制时间
最后一层的橙子已经腐烂完毕,遍历它的四周也没有增长,故minute-1

class Solution {
public:
    int orangesRotting(vector<vector<int>>& grid) {
        vector<int> dx={-1,1,0,0};
        vector<int> dy={0,0,-1,1};
        queue<vector<int>> que;
        int minute=0,num=0;
        int x,y;
        for(int i=0;i<grid.size();i++)
        {
           for(int j=0;j<grid[i].size();j++) 
           {
               if(grid[i][j]!=0)
                    num++;
               if(grid[i][j]==2)
                    que.push({i,j});
           }
        }
        if(num==0) return 0;
        while(!que.empty())
        {
            int size=que.size();
            for(int i=0;i<size;i++)
            {
               vector<int> tmp=que.front();
               que.pop();
               num--;  
               for(int k=0;k<4;k++)
               {               
                    x=tmp[0]+dx[k];
                    y=tmp[1]+dy[k];
                   if(x>=0&&x<grid.size()&&y>=0&&y<grid[0].size()&&grid[x][y]==1)
                    {
                        grid[x][y]=2;
                        que.push({x,y});
                    }
               } 
            }
            minute++;
        }
        return num==0?minute-1:-1;   
    }
};

附录:多源bfs框架
多源BFS框架(学习链接)

level = 0
while queue 不空:
    size = queue.size()
    while (size --) {
        cur = queue.pop()
        for 节点 in cur的所有相邻节点:
            if 该节点有效且未被访问过:
                queue.push(该节点)
    }
    level ++;
内容概要:本文介绍了基于自适应傅里叶分解(AFD)的多通道信号分析方法,并提供了完整的Matlab代码实现,适用于复杂信号的时频分析。该方法特别针对非平稳、非线性信号具有良好的分解能力,可用于如机械故障诊断、生物医学信号处理等领域。文档还列举了多个相关研究方向和技术应用实例,包括轴承故障检测、无人机路径规划、微电网功率交换、信号去噪与预测等,展示了AFD及其他先进算法在工程实践中的广泛适用性。同时附带网盘资源链接,便于获取完整代码与资料。; 适合人群:具备一定信号处理或自动化背景的研究生、科研人员及从事机电系统故障诊断、智能算【自适应傅里叶分解AFD】多通道信号分析的自适应傅里叶分解(Matlab代码实现)法开发的工程技术人员;熟悉Matlab编程并希望将先进信号分析方法应用于实际项目的从业者;; 使用场景及目标:①在变速工况下对多通道振动信号进行高效特征提取与故障识别;②利用AFD替代传统傅里叶变换或EMD方法提升信号分解精度;③结合倒谱预白化、包络谱分析等技术实现强噪声环境下的早期故障诊断;④拓展至无人机、电力系统、通信等领域的信号建模与优化问题; 阅读建议:建议读者按目录顺序系统学习,重点关注AFD算法原理与Matlab实现细节,结合提供的案例调试代码,理解参数设置对分解效果的影响;同时可参考文中提及的其他高级算法(如鲸鱼优化、深度学习模型)进行融合创新,提升研究深度与实用性。
【源码免费下载链接】:https://renmaiwang.cn/s/puuzw MATLAB混沌工具箱,如"Chaos-Toolbox-Ver.2.0",为混沌系统研究者及工程技术人员提供了强大的工具。它特别适用于在MATLAB环境下进行混沌系统分析。该工具箱集成了多种功能模块,能够帮助用户完成Lyapunov指数计算、奇异吸引子绘制以及庞加莱截面图生成等关键任务。这些操作均与混沌动力学分析密切相关。 1. **Lyapunov指数**:正的Lyapunov指数表明系统对初始条件具有高度敏感性,这是判断一个动态系统是否为混沌系统的可靠指标。该工具箱提供了计算Lyapunov指数的功能模块,使用户能够定量评估混沌系统的稳定性特征。 2. **奇异吸引子**:通过此工具箱,用户可以方便地绘制各种典型混沌系统的奇异吸引子图形,如洛伦兹吸引子、Hénon映射等。这些可视化结果有助于深入理解复杂动力学行为。 3. **庞加莱截面图**:该工具箱内置了生成庞加莱截面图的函数模块,可将高维系统投影至二维空间,从而更直观地观察系统的长期演化规律及其潜在周期性或混沌特性。 4. **MATLAB兼容性**:Chaos-Toolbox-Ver.2.0与MATLAB7.0及7.1版本完美兼容,确保即使在较老版本的MATLAB环境中也能顺利运行相关功能模块。 5. **应用领域**:该工具箱广泛应用于气象预测、生物系统研究、经济模型分析、密码学设计以及电路仿真等多个领域。它为研究人员和工程师提供了一种高效便捷的研究方法,帮助探索各领域中的混沌现象本质。 6. **使用教程**:尽管文本中未提及具体使用说明,但通常这类工具箱都会附带用户手册或指导文档,详细解释如何利用其功能模块进行实际分析工作。有需要的用户可通过访问www.pudn.com.txt获取完整的技术指南和相关资源信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值