描述
将正整数 x 的约数个数表示为 g(x)。例如,g(1)=1,g(4)=3, g(6)=4。
如果对于任意正整数y,当 0 < y < x 时,x 都满足 g(x) > g(y), 则称 x 为反质数。整数 1,2,4,6 等都是反质数。
现在任意给定两个正整数 M, N,其中,M < N <= 20000000,按从小到大输出其中(包括 M 和 N)的所有反质数。如果没有,则输出大写的NO。
输入
一行,包含两个正整数M和N,用单个空格隔开。
输出
在一行内输出所有反质数,以逗号间隔。如果没有,则输出 NO。
样例输入
1 13
样例输出
1,2,4,6,12
超时解法,比较暴力,能拿6分(满分10)
#include<iostream>
using namespace std;
int m,n,last=0;
int g(int x)
{
int ans=0;
for(int j=1;j<=x;j++)
{
if(x%j==0) ans++;
}
return ans;
}
int main()
{
scanf("%d %d",&m,&n);
bool flag=false;
for(int i=1;i<m;i++)
{
int tmp=g(i);
last=max(last,tmp);
}
for(int i=m;i<=n;i++)
{
int tmp=g(i);
if(!flag && tmp>last)
{
printf("%d",i);
flag=true;
last=tmp;
continue;
}
if(tmp>last && flag) printf(",%d",i);
last=max(last,tmp);
}
if(!flag) printf("NO");
return 0;
}
最后ac代码,主函数基本没有变化,提前打表,p[]数组中的质数可以任意组合成为1-20000000中的任意一个数。
#include<iostream>
using namespace std;
int m,n,last=0;
int a[20000005];
const int p[]={0,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53};
int dfs(int x,int now,int y)
{
a[now]=y;
for(int i=1;now*p[x]<=n;i++)
dfs(x+1,now*=p[x],y*(i+1));
}
int main()
{
scanf("%d %d",&m,&n);
bool flag=false;
dfs(1,1,1);
for(int i=1;i<m;i++) last=max(last,a[i]);
for(int i=m;i<=n;i++)
{
if(!flag && a[i]>last)
{
printf("%d",i);
flag=true;
last=a[i];
continue;
}
if(a[i]>last && flag) printf(",%d",i);
last=max(last,a[i]);
}
if(!flag) printf("NO");
return 0;
}