NOI-7591 反质数

描述

将正整数 x 的约数个数表示为 g(x)。例如,g(1)=1,g(4)=3, g(6)=4。

如果对于任意正整数y,当 0 < y < x 时,x 都满足 g(x) > g(y), 则称 x 为反质数。整数 1,2,4,6 等都是反质数。

现在任意给定两个正整数 M, N,其中,M < N <= 20000000,按从小到大输出其中(包括 M 和 N)的所有反质数。如果没有,则输出大写的NO。

输入
一行,包含两个正整数M和N,用单个空格隔开。
输出
在一行内输出所有反质数,以逗号间隔。如果没有,则输出 NO。
样例输入

1 13

样例输出

1,2,4,6,12

超时解法,比较暴力,能拿6分(满分10)

#include<iostream>
using namespace std;
int m,n,last=0;
int g(int x)
{
	int ans=0;
	for(int j=1;j<=x;j++)
	{
		if(x%j==0) ans++;
	}
	return ans;
}
int main()
{
	scanf("%d %d",&m,&n);
	bool flag=false;
	for(int i=1;i<m;i++)
	{
		int tmp=g(i);
		last=max(last,tmp);
	}
	for(int i=m;i<=n;i++)
	{
		int tmp=g(i);
		if(!flag && tmp>last)
		{
			printf("%d",i);
			flag=true;
			last=tmp;
			continue;
		}
		if(tmp>last && flag) printf(",%d",i);
		last=max(last,tmp);
	}
	if(!flag) printf("NO");
	return 0;
 } 

最后ac代码,主函数基本没有变化,提前打表,p[]数组中的质数可以任意组合成为1-20000000中的任意一个数。

#include<iostream>
using namespace std;
int m,n,last=0;
int a[20000005]; 
const int p[]={0,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53};
int dfs(int x,int now,int y)
{
	a[now]=y;
	for(int i=1;now*p[x]<=n;i++)
		dfs(x+1,now*=p[x],y*(i+1));
}
int main()
{
	scanf("%d %d",&m,&n);
	bool flag=false;
	dfs(1,1,1);
	for(int i=1;i<m;i++) last=max(last,a[i]);
	for(int i=m;i<=n;i++)
	{
		if(!flag && a[i]>last)
		{
			printf("%d",i);
			flag=true;
			last=a[i];
			continue;
		}
		if(a[i]>last && flag) printf(",%d",i);
		last=max(last,a[i]);
	}
	if(!flag) printf("NO");
	return 0;
 } 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值