引言
单图像超分辨(SR)是计算机视觉领域的经典问题。目前最先进的方法大多是基于样本。这些方法不仅可以利用相同图像的内部相似性,而且可以学习LR和HR之间的映射。
稀疏编码的方法是基于样本最具代表性方法的一种。稀疏编码分为三部。首先从图片中提取大量的重叠块。然后,这些重叠块被低分辨率字典编码得到稀疏系数。最后,高分辨率字典根据这些系数重加高分辨图像。
这篇论文的主要创新点有三点:
- 提出了卷积神经网络用于图像的超分辨重建。网络直接学习高低分辨率图像的映射,没有其他预处理
- 建立了深度学习SR和传统的稀疏编码方法之间的关系。
- 证明了深度学习在解决超分辨问题是有效的。
相关工作
Image Super-Resolution
一些最先进的超分方法时学习高低分辨率图像块之间的映射。稀疏编码的方法以及一些它的改进方法是最先进的方法。在那些方法中优化的对象主要还是图像块。而且块的提取和聚合是单独处理的。本文方法是直接学习低分辨率和高分辨率之间的映射
Convolutional Neural Networks
卷积神经网络的兴起主要是源于2012的imagenet 图像分类比赛。还包括了其他几个因素
- GPU
- ReLU激活函数的提出,使网络保持性能的同时可以收敛的更快
- 大规模的训练数据