srcnn (Learning a Deep Convolutional Networkfor Image Super-Resolution)论文阅读笔记

本文是关于SRCNN(学习深度卷积网络进行图像超分辨率)的论文阅读笔记,讨论了如何使用卷积神经网络直接学习低分辨率与高分辨率图像之间的映射,与传统稀疏编码方法的关系,以及深度学习在图像恢复中的应用。实验表明,通过调整网络参数和损失函数,可以有效提升超分辨率重建的性能。
摘要由CSDN通过智能技术生成

引言

        单图像超分辨(SR)是计算机视觉领域的经典问题。目前最先进的方法大多是基于样本。这些方法不仅可以利用相同图像的内部相似性,而且可以学习LR和HR之间的映射。

        稀疏编码的方法是基于样本最具代表性方法的一种。稀疏编码分为三部。首先从图片中提取大量的重叠块。然后,这些重叠块被低分辨率字典编码得到稀疏系数。最后,高分辨率字典根据这些系数重加高分辨图像。

        这篇论文的主要创新点有三点:

  1. 提出了卷积神经网络用于图像的超分辨重建。网络直接学习高低分辨率图像的映射,没有其他预处理
  2. 建立了深度学习SR和传统的稀疏编码方法之间的关系。
  3. 证明了深度学习在解决超分辨问题是有效的。

相关工作

Image Super-Resolution

        一些最先进的超分方法时学习高低分辨率图像块之间的映射。稀疏编码的方法以及一些它的改进方法是最先进的方法。在那些方法中优化的对象主要还是图像块。而且块的提取和聚合是单独处理的。本文方法是直接学习低分辨率和高分辨率之间的映射

Convolutional Neural Networks

卷积神经网络的兴起主要是源于2012的imagenet 图像分类比赛。还包括了其他几个因素

  1. GPU
  2. ReLU激活函数的提出,使网络保持性能的同时可以收敛的更快
  3. 大规模的训练数据

Deep Le

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一壶浊酒..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值