摘要:尽管基于卷积神经网络的单图像超分辨率在精度和速度上有了很大的突破,但是当我们使用较大的尺度因子时如何恢复更多的纹理细节,这一问题仍然没有解决。基于深度学习的超分辨算法主要依赖于目标函数。近年来,许多工作都是围绕着最小化MSE重建损失。重建的结果有着较高的PSNR,但是这缺少高频信息,而且感知不符合。在这篇文章中,我们提出了基于生成对抗网络的超分算法,SRGAN。据我所知,这是第一个可以推理出四倍上采样因子的真实自然图片的模型框架。为了这,我们提出了感知损失函数。感知损失函数是包含了对抗损失和内容损失。此外,我们受感知相似性的启发,使用了内容损失。我们的深度残差网络可以从下采样的公开数据集上恢复真实照片。MOS测试,表明了SRGAN在感知质量上恢复的很好。SRGAN获得的MOS分数更接近真实的高分辨图像,比那些优秀的算法。
引言
超分辨是一个相当具有挑战性的计算机视觉任务。SR得到了计算机视觉研究者的重视。
对于大的尺度因子,恢复的SR图像通常缺少纹理细节。有监督SR算法的优化目标通常是MSE.优化MSE可以获得更大的PSNR。PSNR是评估SR算法最常见的指标。但是,由于PSNR是基于像素来衡量图像之间的差异,所以这导致捕获更少的感知差异,比如纹理细节。从图2可以看到SRResNet获得的更高的PSNR,与SRGAN相比,但是从视觉感知上,明显SRGAN恢复的效果更加符合人眼。
在这篇文章里,