摘要:在本文中,我们提出了一个新的注意模块,与大多数现有模型相比,该模块不仅实现了最佳性能,而且参数更少。由于其轻巧的特性,我们的注意力模块可以轻松地与其他卷积神经网络集成。双多尺度注意网络 (DMSANet) 的网络由两部分组成: 第一部分用于提取各种尺度的特征并将其聚合,第二部分并行使用空间和通道注意模块来自适应地集成本地特征及其全局依赖性。我们对我们的网络性能进行了基准测试,以在ImageNet数据集上进行图像分类,在MS COCO数据集上进行对象检测和实例分割。
引言
卷积神经网络的局部感受野。在著名的InceptionNet (Szegedy等人,2016) 中使用的多尺度体系结构聚合来自不同大小的卷积核的多尺度信息。注意网络最近引起了很多注意,因为它允许网络只关注重要方面,而忽略那些无用的方面 (Li等人,2019) 、 (Cao等人,2019) 和 (Li等人,2019)。
在计算机视觉中使用注意机制已经成功解决了许多问题,例如图像分类,图像分割,对象检测和图像生成。大多数注意机制可以大致分为两种类型,通道注意和空间注意,这两种类型都通过聚合来自不同维度的信息来增强原始特征 (Zhang等,2021)。<