2-SAT问题
求解n个布尔变量满足合取范式的解,每个变量两个取值,实际上代表两种状态的选择。
一些建边的技巧
(1)同或建边(x,y),(x^1,y^1),(y,x),(y^1,x^1)
(2)异或建边(x,y^1),(x^1,y),(y,x^1),(y^1,x)
(3)某些变量固定取值(如x=1),(x^1,x)构造反状态的矛盾即可
dfs染色法求字典序最小的解
struct E
{
int to,next;
}edge[maxm];
int head[maxn],tol;
inline void Addedge(int u,int v)
{
edge[tol].to=v;edge[tol].next=head[u];head[u]=tol++;
return;
}
bool vis[maxn];
int stk[maxn],top;
inline bool dfs(int u)
{
if(vis[u^1]) return 0;
if(vis[u]) return 1;
vis[u]=1;
stk[top++]=u;
for(int i=head[u];i!=-1;i=edge[i].next){
if(!dfs(edge[i].to)) return 0;
}
return 1;
}
由于矛盾的表现是同一变量的两种状态属于同一个强连通分量,当某个变量两种状态都矛盾时,不论前面变量如何修改,这个变量始终要选择一种状态,始终会矛盾,故不需回溯。
Tarjan强连通分量求法
建边的对称性可证明当所有变量两种状态不属于同一强连通分量时求出一组解,时间复杂度O(n+m)
struct E
{
int to,next;
}edge[maxm];
int head[maxn],tol;
inline void Addedge(int u,int v)
{
edge[tol].to=v;edge[tol].next=head[u];head[u]=tol++;
return;
}
int dfn[maxn],low[maxn],bel[maxn],stk[maxn],tot,top,blocks;
inline void Tarjan(int u)
{
dfn[u]=low[u]=++tot;
stk[top++]=u;
int v;
for(int i=head[u];i!=-1;i=edge[i].next){
v=edge[i].to;
if(!dfn[v]){
Tarjan(v);
if(low[v]<low[u]) low[u]=low[v];
}
else if(!bel[v]&&dfn[v]<low[u]) low[u]=dfn[v];
}
if(low[u]==dfn[u]){
++blocks;
do{
v=stk[--top];
bel[v]=blocks;
}while(v!=u);
}
return;
}
inline void init()
{
memset(head,-1,sizeof(head));
memset(dfn,0,sizeof(dfn));
memset(bel,0,sizeof(bel));
tol=top=tot=blocks=0;
return;
}
inline bool solve(int n)
{
for(int i=0;i<n;i++) if(!dfn[i]) Tarjan(i);
for(int i=0;i<n;i+=2){
if(bel[i]==bel[i^1]) return 0;
}
return 1;
}