2—SAT模版

2-SAT问题

求解n个布尔变量满足合取范式的解,每个变量两个取值,实际上代表两种状态的选择。

一些建边的技巧

(1)同或建边(x,y),(x^1,y^1),(y,x),(y^1,x^1)

(2)异或建边(x,y^1),(x^1,y),(y,x^1),(y^1,x)

(3)某些变量固定取值(如x=1),(x^1,x)构造反状态的矛盾即可

 

dfs染色法求字典序最小的解

struct E
{
    int to,next;
}edge[maxm];
int head[maxn],tol;
inline void Addedge(int u,int v)
{
    edge[tol].to=v;edge[tol].next=head[u];head[u]=tol++;
    return;
}
bool vis[maxn];
int stk[maxn],top;
inline bool dfs(int u)
{
    if(vis[u^1]) return 0;
    if(vis[u]) return 1;
    vis[u]=1;
    stk[top++]=u;
    for(int i=head[u];i!=-1;i=edge[i].next){
        if(!dfs(edge[i].to)) return 0;
    }
    return 1;
}

由于矛盾的表现是同一变量的两种状态属于同一个强连通分量,当某个变量两种状态都矛盾时,不论前面变量如何修改,这个变量始终要选择一种状态,始终会矛盾,故不需回溯。

 

Tarjan强连通分量求法

建边的对称性可证明当所有变量两种状态不属于同一强连通分量时求出一组解,时间复杂度O(n+m)

struct E
{
    int to,next;
}edge[maxm];
int head[maxn],tol;
inline void Addedge(int u,int v)
{
    edge[tol].to=v;edge[tol].next=head[u];head[u]=tol++;
    return;
}
int dfn[maxn],low[maxn],bel[maxn],stk[maxn],tot,top,blocks;
inline void Tarjan(int u)
{
    dfn[u]=low[u]=++tot;
    stk[top++]=u;
    int v;
    for(int i=head[u];i!=-1;i=edge[i].next){
        v=edge[i].to;
        if(!dfn[v]){
            Tarjan(v);
            if(low[v]<low[u]) low[u]=low[v];
        }
        else if(!bel[v]&&dfn[v]<low[u]) low[u]=dfn[v];
    }
    if(low[u]==dfn[u]){
        ++blocks;
        do{
            v=stk[--top];
            bel[v]=blocks;
        }while(v!=u);
    }
    return;
}
inline void init()
{
    memset(head,-1,sizeof(head));
    memset(dfn,0,sizeof(dfn));
    memset(bel,0,sizeof(bel));
    tol=top=tot=blocks=0;
    return;
}
inline bool solve(int n)
{
    for(int i=0;i<n;i++) if(!dfn[i]) Tarjan(i);
    for(int i=0;i<n;i+=2){
        if(bel[i]==bel[i^1]) return 0;
    }
    return 1;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值