关于解决Tensorboard出现No dashboards are active for the current data set.问题

关于启动Tensorboard,在浏览器中打开可视化界面,会出现No dashboards are active for the current data set.错误,大概意思就是无法从事件文件中加载出任何数据。

关于这个问题,网上所有的答案我总结一下,无非以下几点:

  • 1. 路径含有中文:

tensorboard --logdir=路径中含有中文可能会导致这个问题,解决方法也比较简单,将中文替换成英文。

  • 2. 路径错误:

tensorboard --logdir=路径,这个路径不用带上引号,且该路径下必须包含事件文件。

如果不放心自己是不是路径问题,在tensorboard可视化网页界面的scalars模块的左下角有个路径,这个路径按道理应是启动tensorboard时指定的路径,复制该路径到文件夹中搜索,看是否成功定位到事件文件的上一级目录。

  • 3.启动tensorboard语句是否正确:

我使用的tensorboard版本为2.0.1,使用的语句为:tensorboard --logdir=E:\asa\20201028;E:\asa\20201028为事件文件的上一级目录,可以是绝对路径,也可以是相对路径,都不带引号

有些版本的tensorboard需要将=改为“ ”,即:tensorboard --logdir ”E:\asa\20201028“,具体我没有去研究。

  • 4.使用其他浏览器打开网页:

使用360浏览器、火狐浏览器等都不能正常打开,只可以使用Chrome打开。

正文:

若上面这些方法都无解解决问题,那么你很可能遇到和我一样的问题,因为这个问题,我折腾了一天,对你没听错就是一天。我首先介绍下,我遇到了什么问题:我尝试了很多方法,甚至换了不同的tensorboard版本,依然无法解决。当我准备放弃的时候,我突然发现下面这个Data location路径一直都是logs,不管我在启动tensorboard指定怎样的路径。

这就很奇怪啦,我明明指定了路径,为啥一直都是logs呢,为此我去仔细检查我anconda创建的虚拟环境,查看tensorboard.exe文件配置的环境变量是否为另一个虚拟环境,答案是都没问题。

最后,猜想是不是这个端口问题,为此我换了一个8008端口,奇迹出现啦,那个熟悉的页面也出来啦;这时我恍然大悟,肯定是默认的6006端口被占用啦,这就很操蛋。

具体命令为:

tensorboard --logdir=E:\asa\20201028 --host=127.0.0.1 --port=8008

不死心的我,到底还要去查查,我的6006端口被啥给占用啦。

1.Win+R在运行窗口输入cmd调出命令行窗口(也可以搜索之后以管理员模式运行)

2.查看所有被打开的端口列表:netstat -ano

3.查看6006端口占用情况:netstat -ano | findstr "6006"

### 解决 Ubuntu 上 TensorBoard 显示无活跃仪表板的问题 当遇到 TensorBoard 在 Ubuntu 系统上显示 "no dashboards are active for the current data set" 的情况时,这通常意味着 TensorBoard 无法找到任何有效的日志文件来生成可视化数据。以下是几种可能的原因及解决方案: #### 日志目录配置错误 确保指定了正确的日志目录路径给 `tensorboard` 命令。如果指定的日志目录为空或不包含 TensorFlow 记录器写入的数据,则不会有任何可用的面板。 ```bash tensorboard --logdir=/path/to/logs ``` 该命令中的 `/path/to/logs` 需要替换为实际存储训练过程中产生的事件文件的位置[^1]。 #### 版本兼容性问题 不同版本间的 API 变化可能导致旧版 TensorBoard 读取新版 TensorFlow 创建的日志出现问题,反之亦然。建议保持两者处于相同的主要版本系列,并考虑升级到最新稳定版本以获得更好的支持和特性集。 安装最新的 TensorBoard 和 TensorFlow: ```bash pip install --upgrade tensorflow tensorboard ``` 重启服务并重新加载页面查看效果变化。 #### 数据格式验证 确认所使用的模型正在向默认摘要操作添加必要的元数据以便于 TensorBoard 正确解析。对于自定义层或其他非标准组件,需手动调用相应函数记录所需信息至磁盘。 例如,在 Keras 中可以通过如下方式启用历史记录追踪功能: ```python from keras.callbacks import TensorBoard model.fit( ... callbacks=[TensorBoard(log_dir='/tmp/tb_logs')] ) ``` 上述代码片段展示了如何通过回调机制将训练过程中的性能指标保存下来供后续分析使用。
评论 53
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值