硬币问题

题目简介:有不同面额的硬币,给定一个总金额,计算构成该数量所需的最少数量的硬币数。如果不能构成这笔钱,则返回-1.

示例:

解题思路:开始我想的使用贪心法进行求解,但是后面发现贪心法并不能求出最有解,甚至有的时候是无法求出解来的。因此这个题最佳的方法就是使用动态规划的方法来记性求解,动态规划的方式主要是一个位置的结果依赖于上一个位置的结果。一般这样分析,这里有两种数据,一个是硬币的数量,一个是金额的数量。如果是按照硬币的来的话,加入有以下4中硬币数:13,35,61,194四种硬币数,那么第一大的硬币的数量就决定这第二大硬币的数量,这样显然不好求,或者说这种思路可以用回溯法进行求解,但是比较麻烦。

另外一种方法就是依据具体的总金额,例如总金额为2634,硬币数依然是上面的四种,那么这里的数值依赖就是根据这四种硬币的数值来决定的。很明显,假如总金额2634能够构成最佳的硬币组合,并且这个组合里包含194这个面值的硬币,那么2634-194=2440这一总金额也能够构成最佳的硬币组合。因此,在总金额为2634时,其硬币的最佳组合是依赖于2440的硬币最佳组合的,换句话说,假如知道了2440的最少硬币数(该值为n),那么就知道了2634的一个最小硬币数了(n+1)。这里还有另外一种情况,就是刚好2634-61=2573也能够组成最佳硬币组合,也就是说2634也依赖与2573这个总金额了,那么就要进行比较了,求得能够组成该总金额数的最小硬币数了。

代码:

class Solution {
 public int coinChange(int[] coins, int amount) {
  if(coins.length==0||amount==0)
			 return 0;
		 int []num=new int[amount+1];
		 for(int i=1;i<=amount;i++)
		 {
			 //下面要进行比较取最小值,因此这里的值可以去integer类型的最大值
			 num[i]=Integer.MAX_VALUE;
			 for(int j=0;j<coins.length;j++)
			 {
				 
				 //如果减去某一面值的硬币后的总金额依然能够构成最优硬币数,那么该值就能够构成最佳硬币数了,
				 ///但是需要与减去每个硬币值后的总金额对应的硬币数进行比较
				 if(i>=coins[j]&&num[i-coins[j]]!=Integer.MAX_VALUE)
				 {
					 num[i]=Math.min(num[i], num[i-coins[j]]+1);
				 }
			 }
		 }
	 
		 if(num[amount]==Integer.MAX_VALUE)
			 return -1;
		 return num[amount];
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值