题目简介:有不同面额的硬币,给定一个总金额,计算构成该数量所需的最少数量的硬币数。如果不能构成这笔钱,则返回-1.
示例:
解题思路:开始我想的使用贪心法进行求解,但是后面发现贪心法并不能求出最有解,甚至有的时候是无法求出解来的。因此这个题最佳的方法就是使用动态规划的方法来记性求解,动态规划的方式主要是一个位置的结果依赖于上一个位置的结果。一般这样分析,这里有两种数据,一个是硬币的数量,一个是金额的数量。如果是按照硬币的来的话,加入有以下4中硬币数:13,35,61,194四种硬币数,那么第一大的硬币的数量就决定这第二大硬币的数量,这样显然不好求,或者说这种思路可以用回溯法进行求解,但是比较麻烦。
另外一种方法就是依据具体的总金额,例如总金额为2634,硬币数依然是上面的四种,那么这里的数值依赖就是根据这四种硬币的数值来决定的。很明显,假如总金额2634能够构成最佳的硬币组合,并且这个组合里包含194这个面值的硬币,那么2634-194=2440这一总金额也能够构成最佳的硬币组合。因此,在总金额为2634时,其硬币的最佳组合是依赖于2440的硬币最佳组合的,换句话说,假如知道了2440的最少硬币数(该值为n),那么就知道了2634的一个最小硬币数了(n+1)。这里还有另外一种情况,就是刚好2634-61=2573也能够组成最佳硬币组合,也就是说2634也依赖与2573这个总金额了,那么就要进行比较了,求得能够组成该总金额数的最小硬币数了。
代码:
class Solution {
public int coinChange(int[] coins, int amount) {
if(coins.length==0||amount==0)
return 0;
int []num=new int[amount+1];
for(int i=1;i<=amount;i++)
{
//下面要进行比较取最小值,因此这里的值可以去integer类型的最大值
num[i]=Integer.MAX_VALUE;
for(int j=0;j<coins.length;j++)
{
//如果减去某一面值的硬币后的总金额依然能够构成最优硬币数,那么该值就能够构成最佳硬币数了,
///但是需要与减去每个硬币值后的总金额对应的硬币数进行比较
if(i>=coins[j]&&num[i-coins[j]]!=Integer.MAX_VALUE)
{
num[i]=Math.min(num[i], num[i-coins[j]]+1);
}
}
}
if(num[amount]==Integer.MAX_VALUE)
return -1;
return num[amount];
}
}