leetcode(33)_863_medium_二叉树中所有距离为 K 的结点_python

这篇博客介绍了如何在给定的二叉树中找到距离目标节点K步的所有节点。算法从目标节点开始,分别沿着子节点和父节点路径进行搜索。对于子节点路径,当步数达到K时收集节点;对于父节点路径,根据路径方向选择另一侧子节点继续搜索。最后返回所有距离为K的节点值。代码实现了这个算法,并在测试中取得了较好的时间和空间效率。
摘要由CSDN通过智能技术生成

二叉树中所有距离为 K 的结点

题目描述:
给定一个二叉树(具有根结点 root), 一个目标结点 target ,和一个整数值 K 。
返回到目标结点 target 距离为 K 的所有结点的值的列表。 答案可以以任何顺序返回。

示例 :
在这里插入图片描述
输入:root = [3,5,1,6,2,0,8,null,null,7,4], target = 5, K = 2
输出:[7,4,1]
解释:所求结点为与目标结点(值为 5)距离为 2 的结点,值分别为 7,4,以及 1
注意,输入的 “root” 和 “target” 实际上是树上的结点。
上面的输入仅仅是对这些对象进行了序列化描述。
提示:

  • 给定的树是非空的。
  • 树上的每个结点都具有唯一的值 0 <= node.val <= 500 。
  • 目标结点 target 是树上的结点。
  • 0 <= K <= 1000.

解法

  1. target开始寻找距离为 K 的结点时,有两个方向:第一个是往其孩子结点走,也就是往下走 K 步即可;第二个是往父节点记作parent走,我们不妨假设targetparent的左孩子,在到达parent后,由于不能原路返回,所以要么继续往上再找parent的父节点,要么沿着parent的另一侧,也就是从parent的右孩子不断往下走。
  2. 第一个方向是非常好实现的,我们需要记录走了多少步,满 K 步后把对应的结点值记录下来即可。
  3. 第二个方向也不麻烦,到达parent后再往右孩子的方向走,就相当于从parent的右侧再走 K - 1 步;如果继续往上找到parent的父节点,那就是再走 K - 2 步。所以我们在确定target的位置时,需要把途径的结点记录下来。同时我们也要注意在往父节点走的时候,不能原路返回,所以需要判断孩子在父节点的哪一侧,确定好之后往另一侧走即可。
代码
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def distanceK(self, root: TreeNode, target: TreeNode, k: int) -> List[int]:
        path, res = [], []  # 找到 target 途经的结点集合,距离为 k 的结点集合
        self.findTarget(root, target, path)  # 寻找 target
        for i in range(min(k + 1, len(path))):  # 如果 k 比较小,较远的父亲节点并不会达到
            if i == 0:  # 起点为 target,往下走 k 步
                self.findDistanceKInChild(path[i], k - i, res)
            elif i == k:  # 此时该节点就与 target 距离 k 步,不用再往下走了
                res.append(path[i].val)
            elif path[i - 1] == path[i].right:  # 如果 path[i - 1] 在 path[i] 的右侧,那只能往 path[i] 的左侧走
                self.findDistanceKInChild(path[i].left, k - i - 1, res)
            else:  # 如果 path[i - 1] 在 path[i] 的左侧,那只能往 path[i] 的右侧走
                self.findDistanceKInChild(path[i].right, k - i - 1, res)
        return res

    def findTarget(self, root: TreeNode, target: TreeNode, path):
        if not root:
            return False
        # 如果该节点就是 target;或者在左侧找到;或者在右侧找到,就说明该节点处于路径上,记录下来
        if root == target or self.findTarget(root.left, target, path) or self.findTarget(root.right, target, path):
            path.append(root)
            return True
        return False
    
    def findDistanceKInChild(self, root, k, res):
        if not root:
            return
        if k == 0:  # 走了 k 步,记录结果
            res.append(root.val)
            return
        self.findDistanceKInChild(root.left, k - 1, res)
        self.findDistanceKInChild(root.right, k - 1, res)
        return
      
测试结果

执行用时:44 ms, 在所有 Python3 提交中击败了 74.23% 的用户
内存消耗:15.1 MB, 在所有 Python3 提交中击败了 94.68% 的用户

说明

算法题来源:力扣(LeetCode)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值