超级丑数
题目描述:
超级丑数 是一个正整数,并满足其所有质因数都出现在质数数组 primes 中。
给你一个整数 n 和一个整数数组 primes ,返回第 n 个 超级丑数 。
题目数据保证第 n 个 超级丑数 在 32-bit 带符号整数范围内。
示例 :
输入:n = 12, primes = [2,7,13,19]
输出:32
解释:给定长度为 4 的质数数组 primes = [2,7,13,19],前 12 个超级丑数序列为:[1,2,4,7,8,13,14,16,19,26,28,32] 。
提示:
- 1 <= n <= 106
- 1 <= primes.length <= 100
- 2 <= primes[i] <= 1000
- 题目数据 保证 primes[i] 是一个质数
- primes 中的所有值都 互不相同 ,且按 递增顺序 排列
解法
新的丑数是由旧的丑数与质数数组中的质数相乘得来,因此我们可以为每个质数设置一个指针,指向旧丑数;如此每次更新丑数的时候都有 n 个候选值,n 为指数数组长度,找到最小值与最小值的位置(可能有多个),并把指针后移一位,即指向下一个丑数。
代码
class Solution:
def nthSuperUglyNumber(self, n: int, primes: List[int]) -> int:
n_prime = len(primes)
idx_prime = [0 for _ in primes] # 每个质数都有一个指针,初始都指向第一个丑数
res = [1]
for i in range(1, n):
target_list = [primes[i] * res[idx_prime[i]] for i in range(n_prime)] # 计算质数与其指向丑数的乘积
target = target_list[0] # 记录最小值
target_idx = [] # 记录最小值的位置
for idx, item in enumerate(target_list):
if item == target: # 如果同为最小值,记录其位置
target_idx.append(idx)
elif item < target:
target = item
target_idx = [idx]
for idx in target_idx: # 每个位置的指针都要后移,因为这个数字已经被使用了
idx_prime[idx] += 1
res.append(target)
return res[n - 1]
测试结果
执行用时:516 ms, 在所有 Python3 提交中击败了 90.13% 的用户
内存消耗:18.5 MB, 在所有 Python3 提交中击败了 53.20% 的用户
说明
算法题来源:力扣(LeetCode)