leetcode(43)_313_medium_超级丑数_python

超级丑数

题目描述:
超级丑数 是一个正整数,并满足其所有质因数都出现在质数数组 primes 中。
给你一个整数 n 和一个整数数组 primes ,返回第 n 个 超级丑数 。
题目数据保证第 n 个 超级丑数 在 32-bit 带符号整数范围内。
示例 :
输入:n = 12, primes = [2,7,13,19]
输出:32
解释:给定长度为 4 的质数数组 primes = [2,7,13,19],前 12 个超级丑数序列为:[1,2,4,7,8,13,14,16,19,26,28,32] 。
提示:

  • 1 <= n <= 106
  • 1 <= primes.length <= 100
  • 2 <= primes[i] <= 1000
  • 题目数据 保证 primes[i] 是一个质数
  • primes 中的所有值都 互不相同 ,且按 递增顺序 排列

解法

新的丑数是由旧的丑数与质数数组中的质数相乘得来,因此我们可以为每个质数设置一个指针,指向旧丑数;如此每次更新丑数的时候都有 n 个候选值,n 为指数数组长度,找到最小值与最小值的位置(可能有多个),并把指针后移一位,即指向下一个丑数。

代码
class Solution:
    def nthSuperUglyNumber(self, n: int, primes: List[int]) -> int:
        n_prime = len(primes)
        idx_prime = [0 for _ in primes]  # 每个质数都有一个指针,初始都指向第一个丑数
        res = [1]
        for i in range(1, n):
            target_list = [primes[i] * res[idx_prime[i]] for i in range(n_prime)]  # 计算质数与其指向丑数的乘积
            target = target_list[0]  # 记录最小值
            target_idx = []  # 记录最小值的位置
            for idx, item in enumerate(target_list):
                if item == target:  # 如果同为最小值,记录其位置
                    target_idx.append(idx)
                elif item < target:
                    target = item
                    target_idx = [idx]
            for idx in target_idx:  # 每个位置的指针都要后移,因为这个数字已经被使用了
                idx_prime[idx] += 1
            res.append(target)
        return res[n - 1]
      
测试结果

执行用时:516 ms, 在所有 Python3 提交中击败了 90.13% 的用户
内存消耗:18.5 MB, 在所有 Python3 提交中击败了 53.20% 的用户

说明

算法题来源:力扣(LeetCode)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值