机器学习
文章平均质量分 94
CZ一星弱火
C++GOGOGO!
展开
-
统计学 | 最大似然估计与EM算法(持续更新)
统计中许多问题的计算最终都归结为一个最优化问题, 典型代表是最大似然估计(MLE)、各种拟似然估计方法、 非线性回归、惩罚函数方法(如svm、lasso)等。最大似然估计经常需要用最优化算法计算, 最大似然估计问题有自身的特点, 可以直接用一般优化方法进行最大似然估计的计算, 但是利用最大似然估计的特点可以得到更有效的算法。设总体 X\boldsymbol{X}X 有概率密度(连续型随机变量)或概率分布(离散型随机变量) p(x∣θ),θp(\boldsymbol{x} \mid \boldsymbol{\原创 2022-09-21 14:46:37 · 482 阅读 · 0 评论 -
【算法】机器学习算法知识点面试准备
尽管生成模型和判别模型都可以用于解决分类任务,判别模型关注的是哪一个标签更适合可观测数据,而生成模型则尝试建模可观测数据的分布。大多数深度神经网络都是判别模型,无论其目的是用于判别类任务还是生成类任务。这是因为很多生成类任务在具体实现中都可以简化为分类或者回归问题。为了提高复杂关系的拟合能力,在特征工程中经常会把一阶离散特征两两组合,构成高阶组合特征。可以采取降维,矩阵分解或者特征筛选的方法得到具备绝大部分信息的几个特征进行训练。欧式距离衡量空间点的直线距离,余弦距离衡量点在空间的方向差异。........原创 2022-08-14 22:26:10 · 1333 阅读 · 1 评论