中国大学MOOC-陈越、何钦铭-数据结构-2021秋
03-树1 树的同构 (25 分)
给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
图1 |
图2 |
现给定两棵树,请你判断它们是否是同构的。
输入格式:
输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。
输出格式:
如果两棵树是同构的,输出“Yes”,否则输出“No”。
输入样例1(对应图1):
8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -
结尾无空行
输出样例1:
Yes
结尾无空行
输入样例2(对应图2):
8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4
输出样例2:
No
解题思路
- 二叉树的表示
- 建二叉树
- 同构判别
代码
#include <stdio.h>
#define MaxTree 10
#define ElementType char
#define Tree int
#define Null -1
/*
结构数组表示二叉树:静态链表
*/
struct TreeNode {
ElementType Element;
Tree Left;
Tree Right;
}T1[MaxTree], T2[MaxTree];
Tree buildTree(struct TreeNode T[]);
int isomorphic(Tree R1, Tree R2);
/*
程序框架搭建
*/
int main() {
Tree R1, R2;
R1 = buildTree(T1);
R2 = buildTree(T2);
if (isomorphic(R1, R2)) {
printf("Yes\n");
}
else {
printf("No\n");
}
return 0;
}
/*
搭建二叉树
*/
Tree buildTree(struct TreeNode T[]) {
int i, N, Root=-1;
ElementType cl, cr;
int check[MaxTree];
scanf("%d\n", &N);
if (N) {
for (i = 0; i < N; i++) {
check[i] = 0;
}
for (i = 0; i < N; i++) {
scanf("%c %c %c\n", &T[i].Element, &cl, &cr);
if (cl != '-') {
T[i].Left = cl - '0';
check[T[i].Left] = 1;
}
else {
T[i].Left = Null;
}
if (cr != '-') {
T[i].Right = cr - '0';
check[T[i].Right] = 1;
}
else {
T[i].Right = Null;
}
}
for (i = 0; i < N; i++) {
if (!check[i]) {// 找根节点
break;
}
}
Root = i;
}
return Root;
}
/*
判别同构
*/
int isomorphic(Tree R1, Tree R2) {
if ((R1 == Null) && (R2 == Null)) { // 全为空
return 1;
}
if ((R1 == Null) && (R2 != Null) || (R1 != Null) && (R2 == Null)) { // 有一个为空
return 0;
}
if (T1[R1].Element != T2[R2].Element) { // 根节点不同
return 0;
}
if (T1[R1].Left == Null && T2[R2].Left == Null) { // 没有左子树
return isomorphic(T1[R1].Right, T2[R2].Right);
}
if (((T1[R1].Left != Null) && (T2[R2].Left != Null)) && ((T1[T1[R1].Left].Element) == (T2[T2[R2].Left].Element))) {
// 不需要转换
return (isomorphic(T1[R1].Left, T2[R2].Left) && isomorphic(T1[R1].Right, T2[R2].Right));
}
else {
// 需要转换
return (isomorphic(T1[R1].Left, T2[R2].Right) && isomorphic(T1[R1].Right, T2[R2].Left));
}
}