给定一长为n的数列,求将其分为m个不相交子段后,使子段和最大,求和。
dp[i][j]为将前j个数分为i段的最大值,必须包括第j个数。
用a[n]来储存这个数列。
dp[i][j]=max(dp[i][j-1]+a[j],dp[i-1][x]+a[j]) ( i<x<j ) 即将a[j]作为第i段的一部分或将其单独作为第i段。
即dp[i][j]=max(dp[i][j-1],dp[i-1][x])+a[j] , 我们只需要找到dp[i][j-1]和dp[i-1][x])中的最大值就行。而且并不需要知道x是多少
即我们只需要用一个数组Max[j-1]来表示j-1个数中分i-1段的最大值,而dp[i][j]=max(dp[i][j-1],Max[j-1])+a[j];
而对于每一个i,我们的dp[i][j]只与d[i][j-1]和Max[j-1]有关,而Max[j-1]就是当i为i-1时最大的dp[i][x] i<x<j-1;
因此我们并不需要用一个庞大的数组dp[m][n]来把每次的最大值储存起来,只需要用一个滚动变量就行
即用temp表示dp[i][j], temp=max(temp,Max[j-1])+a[j]; Max[j-1]=Max[n]; Max[n]=max(temp,Max[n]);
其中Max[n]就是为下一次的Max[j-1]储存值。
而我们最终的出来的Max[n]即我们要求的最大和
#include<iostream>
using namespace std;
int max(int a,int b) {
if(a>=b)
return a;
return b;
}
int a[1000005];
int Max[1000005];
int main() {
int m,n;
while(cin>>m>>n) {
for(int i=0; i<n; i++) {
cin>>a[i];
Max[i]=0;
}
for(int i=0; i<m; i++) {
int temp=0;
for(int k=0; k<=i; k++)
temp+=a[k];
Max[n]=temp;
for(int j=i+1; j<n; j++) {
temp=max(temp,Max[j-1])+a[j];
Max[j-1]=Max[n];
Max[n]=max(Max[n],temp);
}
}
cout<<Max[n]<<endl;
}
}