可能出现的情形讨论
删除红黑树中一个结点,删除的结点是其子结点状态和颜色的组合。子结点的状态有三种:无子结点、只有一个子结点、有两个子结点。颜色有红色和黑色两种。所以共会有6种组合。
组合1:被删结点无子结点,且被删结点为红色
此时直接将结点删除即可,不破坏任何红黑树的性质。
组合2:被删结点无子结点,且被删结点为黑色
处理方法略微复杂,稍后再议。
组合3:被删结点有一个子结点,且被删结点为红色
这种组合是不存在的,如图假如被删结点node只有一个有值的子结点value,而以value为根结点的子树中,必然还存在null结点,如此不符合红黑树的性质5,对每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点。
组合4:被删结点有一个子结点,且被删结点为黑色
这种组合下,被删结点node的另一个子结点value必然为红色,此时直接将node删掉,用value代替node的位置,并将value着黑即可。
组合5&6:被删结点有两个子结点,且被删结点为黑色或红色
当被删结点node有两个子结点时,先要找到这个被删结点的后继结点successor,然后用successor代替node的位置,同时着成node的颜色,此时相当于successor被删。
因为node有两个子结点,所以successor必然在node的右子树中,必然是下图两种形态中的一种。
若是(a)的情形,用successor代替node后,相当于successor被删,若successor为红色,则变成了组合1;若successor为黑色,则变成了组合2或者4(后继节点是右子树最大的节点,这个节点可以有右孩子)(原文这里有错)。
若是(b)的情形,用successor代替node后,相当于successor被删,若successor为红色,则变成了组合1;若successor为黑色,则变成了组合2或4。
综上
若被删结点是组合1或组合4的状态,很容易处理;被删结点不可能是组合3的状态;被删结点是组合5&6的状态,将变成组合1或组合2或组合4。
再议组合2:被删结点无子结点,且被删结点为黑色
因为删除黑色结点会破坏红黑树的性质5,所以为了不破坏性质5,在替代结点上额外增加一个黑色,这样不违背性质5而只违背性质1,每个结点或是黑色或是红色。此时将额外的黑色移除,则完成删除操作。
然后再结合node原来的父结点father和其兄弟结点brother来分析。
情形一
brother为黑色,且brother有一个与其方向一致的红色子结点son,所谓方向一致,是指brother为father的左子结点,son也为brother的左子结点;或者brother为father的右子结点,son也为brother的右子结点。
图(c)中,白色代表随便是黑或是红,方形结点除了存储自身黑色外,还额外存储一个黑色。将brother和father旋转,并重新上色后,变成了图(d),方形结点额外存储的黑色转移到了father,且不违背任何红黑树的性质,删除操作完成。
图(c)中的情形颠倒过来,也是一样的操作。
情形二
brother为黑色,且brother有一个与其方向不一致的红色子结点son
图(e)中,将son和brother旋转,重新上色后,变成了图(f),情形一。
图(e)中的情形颠倒过来,也是一样的操作。
情形三
brother为黑色,且brother无红色子结点
此时若father为红,则重新着色即可,删除操作完成。如图下图(g)和(h)。
此时若father为黑,则重新着色,将额外的黑色存到father,将father作为新的结点进行情形判断(不删除),遇到情形一、情形二,则进行相应的调整,完成删除操作;如果没有,则结点一直上移,直到根结点存储额外的黑色,此时将该额外的黑色移除,即完成了删除操作。
情形四
brother为红色,则father必为黑色。
图(i)中,将brother和father旋转,重新上色后,变成了图(j),新的brother变成了黑色,这样就成了情形一、二、三中的一种。如果将son和brother旋转,无论怎么重新上色,都会破坏红黑树的性质4或5,例如图(k)。
图(i)中的情形颠倒过来,也是一样的操作。