GMOJ P1420 【佳肴】

Description

有两个长度为 n n n 的数组 s [ ] s[] s[] b [ ] b[] b[]

现在有一个长度为 n n n 的并且只含有 0 和 1 并且至少有一个 1 1 1 的数组 k [ ] k[] k[] ,使得 ∣ ∏ i = 1 n s i k i − ∑ i = 1 n b i k i ∣ |\prod_{i=1}^{n}s_ik_i-\sum_{i=1}^{n}b_ik_i| i=1nsikii=1nbiki 的值最小。

现在请你求出这个最小值。

1 ≤ n ≤ 10 , ∏ i = 1 n s i , ∑ i = 1 n b i ≤ 1 0 9 1\leq n\leq 10,\prod_{i=1}^{n}s_i,\sum_{i=1}^{n}b_i\leq 10^{9} 1n10,i=1nsi,i=1nbi109

Solution

考虑使用 DFS 来解题。

由于 1 ≤ n ≤ 10 1 \leq n \leq 10 1n10 ,直接 DFS 选择即可。

时间复杂度 O ( 2 n ) O(2^{n}) O(2n) ,具体细节见 代码 部分。

然后这道题目就做完了。

Code

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
long long int n,a[11],b[11],ans=2147483647;
void dfs(long long int nx,long long int an,long long int bn)
{
    if(nx==n)
    {
        ans=min(ans,abs(an-bn));
        return;
    }
    dfs(nx+1,an,bn);
    dfs(nx+1,an*a[nx+1],bn+b[nx+1]);
}
int main()
{
    scanf("%lld",&n);
    for(long long int i=1;i<=n;i++)
    {
        scanf("%lld%lld",&a[i],&b[i]);
    }
    for(long long int i=1;i<=n;i++)
    {
        dfs(i,a[i],b[i]);
    }
    printf("%lld",ans);
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值