一、环境准备
- 创建Maven工程HdfsClient,并导入相应的依赖坐标+日志添加
<packaging>jar</packaging>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>RELEASE</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
<version>2.8.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.6.0</version>
</dependency>
<dependency>
<groupId>jdk.tools</groupId>
<artifactId>jdk.tools</artifactId>
<version>1.8</version>
<scope>system</scope>
<systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>
</dependency>
</dependencies>
- 在项目的src/main/resources目录下,新建一个文件,命名为“log4j.properties”。
log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
3. 创建包名com.zt.hdfs并创建如上图类,在HdfsClient进行客户端测试
@Test
public void testMkdirs() throws IOException, InterruptedException, URISyntaxException {
// 1 获取文件系统
Configuration configuration = new Configuration();
// 配置在集群上运行
// configuration.set("fs.defaultFS", "hdfs://hadoop102:9000");
// FileSystem fs = FileSystem.get(configuration);
FileSystem fs = FileSystem.get(new URI("hdfs://Lili01:9000"), configuration, "root");
// 2 创建目录
fs.mkdirs(new Path("/user"));
// 3 关闭资源
fs.close();
}
二、HDFS的API操作
API操作HDFS系统都是框架封装好的
- 文件下载(copyToLocalFile)
// 下载文件操作
@Test
public void testCopyToLocalFile() throws IOException, URISyntaxException, InterruptedException {
// 1 获取文件系统
Configuration configuration = new Configuration();
FileSystem fs = FileSystem.get(new URI("hdfs://hadoop001:9000"), configuration, "root");
// 2 执行下载操作
// boolean delSrc 指是否将原文件删除
// Path src 指要下载的文件路径
// Path dst 指将文件下载到的路径
// boolean useRawLocalFileSystem 是否开启文件校验
fs.copyToLocalFile(false, new Path("/spring_mvc.txt"), new Path("d:/spring_mvc.txt"),
true);
// 3 关闭资源
fs.close();
}
2. 文件删除(fs.delete)
// 删除文件操作
@Test
public void testDelete() throws IOException, URISyntaxException, InterruptedException {
// 1 获取文件系统
Configuration configuration = new Configuration();
FileSystem fs = FileSystem.get(new URI("hdfs://hadoop001:9000"), configuration, "root");
// 2 执行删除
fs.delete(new Path("/spring_mvc.txt"), true);
// 3 关闭资源
fs.close();
}
- 修改文件(fs.rename)
// 修改文件操作
@Test
public void testRename() throws IOException, URISyntaxException, InterruptedException {
// 1 获取文件系统
Configuration configuration = new Configuration();
FileSystem fs = FileSystem.get(new URI("hdfs://hadoop001:9000"), configuration, "root");
// 2 修改文件名称
fs.rename(new Path("/spring_mvc.txt"), new Path("/spring_mvc1.txt"));
// 3 关闭资源
fs.close();
}
- 查看文件详情(fs.listFiles)
// 文件详情查看
@Test
public void testRemoteIterator() throws IOException, URISyntaxException, InterruptedException {
// 1获取文件系统
Configuration configuration = new Configuration();
FileSystem fs = FileSystem.get(new URI("hdfs://hadoop001:9000"), configuration, "root");
// 2 获取文件详情
RemoteIterator<LocatedFileStatus> listFiles = fs.listFiles(new Path("/"), true);
while(listFiles.hasNext()){
LocatedFileStatus status = listFiles.next();
// 输出详情
// 文件名称
System.out.println(status.getPath().getName());
// 长度
System.out.println(status.getLen());
// 权限
System.out.println(status.getPermission());
// 分组
System.out.println(status.getGroup());
// 获取存储的块信息
BlockLocation[] blockLocations = status.getBlockLocations();
for (BlockLocation blockLocation : blockLocations) {
// 获取块存储的主机节点
String[] hosts = blockLocation.getHosts();
for (String host : hosts) {
System.out.println(host);
}
}
}
// 3 关闭资源
fs.close();
}
- 判断是否是文件操作(fs.listStatus)
// 判断是否是文件操作
@Test
public void testFileStatus() throws IOException, URISyntaxException, InterruptedException {
// 1 获取文件配置信息
Configuration configuration = new Configuration();
FileSystem fs = FileSystem.get(new URI("hdfs://hadoop001:9000"), configuration, "root");
// 2 判断是文件还是文件夹
FileStatus[] listStatus = fs.listStatus(new Path("/"));
for (FileStatus fileStatus : listStatus) {
// 如果是文件
if (fileStatus.isFile()) {
System.out.println("f:"+fileStatus.getPath().getName());
}else {
System.out.println("d:"+fileStatus.getPath().getName());
}
}
// 3 关闭资源
fs.close();
}
三、HDFS的I/O流操作
采用IO流的方式实现数据的上传和下载
- HDFS文件上传(create)
// HDFS文件上传
@Test
public void IOPutFileToHDFS() throws IOException, InterruptedException, URISyntaxException {
// 1 获取文件系统
Configuration configuration = new Configuration();
FileSystem fs = FileSystem.get(new URI("hdfs://hadoop001:9000"), configuration, "root");
// 2 创建输入流
FileInputStream fileInputStream = new FileInputStream(new File("e:/spring_mvc.txt"));
// 3 获取输出流
FSDataOutputStream fsDataOutputStream = fs.create(new Path("/spring_mvc.txt"));
// 4 流对拷
IOUtils.copyBytes(fileInputStream, fsDataOutputStream, configuration);
// 5 关闭资源
IOUtils.closeStream(fsDataOutputStream);
IOUtils.closeStream(fileInputStream);
fs.close();
}
2. 文件下载(open)
// 文件下载
@Test
public void IOGetFileFromHDFS() throws IOException, InterruptedException, URISyntaxException{
// 1 获取文件系统
Configuration configuration = new Configuration();
FileSystem fileSystem = FileSystem.get(new URI("hdfs://hadoop001:9000"), configuration, "root");
// 2 获取输入流
FSDataInputStream fsDataInputStream = fileSystem.open(new Path("/spring_mvc.txt"));
// 3 获取输出流
FileOutputStream fileOutputStream = new FileOutputStream(new File("d:/spring_mvc.txt"));
// 4 流的对拷
IOUtils.copyBytes(fsDataInputStream, fileOutputStream, configuration);
// 5 关闭资源
IOUtils.closeStream(fileOutputStream);
IOUtils.closeStream(fsDataInputStream);
fileSystem.close();
}
四、HDFS写数据源码解析
- 图解
1)客户端通过Distributed FileSystem模块向NameNode请> 求上传文件,NameNode检查目标文件是否已存在,父目录是否存在。
2)NameNode返回是否可以上传。
3)客户端请求第一个 Block上传到哪几个DataNode服务器上。
4)NameNode返回3个DataNode节点,分别为dn1、dn2、dn3。
5)客户端通过FSDataOutputStream模块请求dn1上传数据,dn1收到请求会继续调用dn2,然后dn2调用dn3,将这个通信管道建立完成。
6)dn1、dn2、dn3逐级应答客户端。
7)客户端开始往dn1上传第一个Block(先从磁盘读取数据放到一个本地内存缓存),以Packet为单位,dn1收到一个Packet就会传给dn2,dn2传给dn3;dn1每传一个packet会放入一个应答队列等待应答。
8)当一个Block传输完成之后,客户端再次请求NameNode上传第二个Block的服务器。(重复执行3-7步)。
- 权威指南
续:
续:
续:
3. 源码解析
xmind图解:
续:
续:
画图图解:
1. 创建文件
2. 写入文件
- 故障解决图
续:
续:
总结:
在hadoop源码风格中作了大量的判断,保证了hadoop的可靠性和容错性,在看源码的时候,关注点应该在他调用一个方法所返回的对象,然后根据返回的对象名和调用的方法名去深入一步一步的理解,不需要太着重观看源码的带判断代码的成分,如 DistributedFileSystem
在第一部分中我们找寻源码不管是从FileSystemLinkResolver 还是this.dfs.createWrappedInputStream(dfsis) 和DistributedFileSystem.this.dfs.open
深入时观看源码中方法所返回的对象名所持有的方法
not learn to live:
The combination of two people caused by their outlooks is going to rapidly fade away .
The combination of two people out of their heart will last forever.
(情始于颜将转瞬即逝,爱发乎心必白头偕老。)