问题描述
时间限制:1.0s 内存限制:256.0MB
一个整数n的阶乘可以写成n!,它表示从1到n这n个整数的乘积。阶乘的增长速度非常快,例如,13!就已经比较大了,已经无法存放在一个整型变量中;而35!就更大了,它已经无法存放在一个浮点型变量中。因此,当n比较大时,去计算n!是非常困难的。幸运的是,在本题中,我们的任务不是去计算n!,而是去计算n!最右边的那个非0的数字是多少。例如,5!=1*2*3*4*5=120,因此5!最右边的那个非0的数字是2。再如,7!=5040,因此7!最右边的那个非0的数字是4。再如,15!= 1307674368000,因此15!最右边的那个非0的数字是8。请编写一个程序,输入一个整数n(0<n<=100),然后输出n!最右边的那个非0的数字是多少。
输入:
7
输出:
4
参考代码
package P0505阶乘计算;
import java.math.BigInteger;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
//数太大,我们不妨用biginteger
Scanner sr = new Scanner(System.in);
BigInteger a = new BigInteger("1");
BigInteger b = new BigInteger(sr.next());
BigInteger temp = new BigInteger("1");
sr.close();
//求出阶乘
while (temp.compareTo(b)!=1) {
a = a.multiply(temp);
temp = temp.add(new BigInteger("1"));
}
String str = a.toString();
//将字符串中倒叙遍历,将非0的数输出
for (int i = str.length()-1; i >= 0; i--) {
if (str.charAt(i) != '0') {
System.out.println(str.charAt(i));
return;
}
}
}
}