机器学习
关于ML的相关内容
SimonChenHere
PhD Candidate,计算机本,人工智能硕,网络安全博。
展开
-
从 SGD 到 Adam —— 6大常见优化算法总结
https://zhuanlan.zhihu.com/p/64113429原创 2020-10-23 20:17:08 · 312 阅读 · 0 评论 -
FLOPs & FLOPS
FLOPS 注意全部大写 是floating point of per second的缩写,意指每秒浮点运算次数。用来衡量硬件的性能。FLOPs 是floating point of operations的缩写,是浮点运算次数,可以用来衡量算法/模型复杂度。CUDA 中FLOPS的计算方法如下:(1)统计您每个线程的计算次数(2)将此值乘以您的线程总数(3)统计出总时间(利用profiler或者自己计时),将2中的值(所有线程的计算次数)除以计算时间,您将得到每秒的计算次数。(4)因为3中的值往原创 2020-10-04 10:19:38 · 385 阅读 · 0 评论 -
分组卷积/群卷积(Group Convolution)
群卷积最早出现于AlexNet中。是为了解决显存不够的问题,将网络部署在两张GTX 580显卡上训练,Alex认为group conv的方式能够增加 filter之间的对角相关性,而且能够减少训练参数,不容易过拟合,这类似于正则的效果。https://blog.csdn.net/hhy_csdn/article/details/80030468...转载 2020-10-03 10:20:09 · 1303 阅读 · 0 评论 -
Connectivity Matrices(连通矩阵)
通常将网络中每对节点之间的连通性表示为二维矩阵。在这个矩阵中,每一行和每一列对应一个不同的节点,位于第i行和第j列交叉处的矩阵元素表示节点i和节点j之间连接的信息。这种矩阵表示通常被称为连通矩阵(connectivity matrice)。https://zhuanlan.zhihu.com/p/152489442...转载 2020-10-03 10:12:09 · 3880 阅读 · 0 评论 -
如何理解皮尔逊相关系数(Pearson Correlation Coefficient)?
https://www.zhihu.com/question/19734616?sort=created原创 2020-10-02 22:34:58 · 1810 阅读 · 0 评论 -
特征向量的辨析(数学,机器学习)
机器学习的特征向量是指你所提取的特征组成的向量,这个特征可以是任意的,比如人的身高体重,头发的长短。。。单位也是由你自己决定的,完全看你的需求。而矩阵的特征向量(eigen vector)是线性代数里的概念。是对矩阵求解本征方程得出的向量。...原创 2020-07-17 15:14:00 · 557 阅读 · 0 评论 -
在机器学习中为什么要进行 One-Hot 编码?
什么是类别数据?类别数据是一种只有标签值而没有数值的变量。它的值通常属于一个大小固定且有限的集合。类别变量也常被称为标称值(nominal)。下面举例说明:宠物(pet)变量包含以下几种值:狗(dog)、猫(cat)。颜色(color)变量包含以下几种值:红(red)、绿(green)、蓝(blue)。位次(place)变量包含以下几种值:第一(first)、第二(second)和第三(third)。以上例子中的每个值都代表着一个不同的类别。有些类别彼此间存在一定的自然关系,比如自然的转载 2020-06-11 23:14:20 · 769 阅读 · 0 评论 -
代码实现多层感知机
实现流程:1.使用pandas读取数据。利用data.iloc()函数来读取csv数据集的各行各列的数据。data.iloc(0:10,1:-1),这个意思,取得数据集的第1行到第9行,这里)0:10是[0:10),-1是指最后一行/列,2.构建模型tf.keras.Sequential()model = tf.keras.Sequential( [ tf.keras.layers.Dense(10,input_shape=(3,),activation='rel原创 2020-06-10 22:16:03 · 709 阅读 · 0 评论 -
解决Keras 与 Tensorflow 版本之间的兼容性问题,导入keras报错:module 'tensorflow.python.keras.backend' has no attribute
解决Keras 与 Tensorflow 版本之间的兼容性问题https://docs.floydhub.com/guides/environments/原创 2020-04-30 23:34:50 · 8170 阅读 · 0 评论 -
python机器学习:线性回归_房价和房屋尺寸关系的线性拟合
# 线性回归(Linear Regression)是利用数理统计中回归分析,# 来确定两种或两种以上变量间相互依赖的定量关系的一种统计分# 析方法# 使用算法:线性回归# 实现步骤:# 1.建立工程并导入sklearn包# 2.加载训练数据,建立回归方程# 3.可视化处理import matplotlib.pyplot as plt#表示matplotlib的pyplot子库,他提...原创 2020-04-27 19:16:02 · 6446 阅读 · 0 评论 -
Python生成词云
import jiebaimport wordcloudfrom scipy.misc import imread#例子1# txt = open("threekingdoms.txt",encoding='utf-8').read()# w = wordcloud.WordCloud(width=1000, font_path='msyh.ttc', height=700)# w...原创 2020-04-27 19:10:38 · 5928 阅读 · 0 评论 -
sklearn分类_姿态预测问题
#-* coding: utf-8-*-import numpy as npimport pandas as pdfrom sklearn.impute import SimpleImputerfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import classification_rep...原创 2020-04-27 19:09:41 · 5797 阅读 · 0 评论 -
朴素贝叶斯的使用
import numpy as npfrom sklearn.naive_bayes import GaussianNBX = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])Y = np.array([1, 1, 1, 2, 2, 2])clt = GaussianNB(priors=None)clt.fi...原创 2020-04-26 12:37:59 · 6048 阅读 · 0 评论 -
分类_决策树算法
#导入sklearn的内嵌鸢尾花数据集from sklearn.datasets import load_iris#导入决策树分类器,同时导入计算交叉验证值的函数cross_val-scorefrom sklearn.tree import DecisionTreeClassifierfrom sklearn.model_selection import cross_val_score#...原创 2020-04-26 11:48:52 · 5011 阅读 · 0 评论 -
NMF(非负矩阵分解)人脸数据特征提取
import matplotlib.pyplot as pltfrom sklearn import decompositionfrom sklearn.datasets import fetch_olivetti_facesfrom numpy.random import RandomStaten_row, n_col = 2, 3n_components = n_row * n_...原创 2020-04-26 11:42:46 · 6591 阅读 · 0 评论 -
k近邻分类器的使用:简单例子
#k近邻分类器的简单例子from sklearn.neighbors import KNeighborsClassifier#创建一组数据x和它对应的标签y:x = [[0], [1], [2], [3]]y = [0,0,1,1]#参数n_neighors设置为3,即使用最近的3个邻居作为分类的依据,其他参数保持默认值,并将创建好的实例赋值给neighneigh = KNeighbo...原创 2020-04-26 11:38:27 · 6465 阅读 · 0 评论