【LLM】解析 RAG 增强检索技术:原理、实现与应用

在这里插入图片描述

一、什么是RAG技术?

RAG(Retrieval-Augmented Generation) 是当前最受关注的自然语言处理技术之一,它通过将信息检索与文本生成相结合,有效解决了传统大语言模型(LLM)的三个核心痛点:

  1. 知识更新延迟:传统LLM的参数固化导致无法获取最新信息
  2. 领域知识缺乏:垂直领域的专业知识难以全面覆盖
  3. 事实性错误:生成内容可能包含看似合理实则错误的"幻觉"

RAG的核心思想可以概括为:

答案生成 = 检索相关文档 + 生成精炼答案

这种架构让系统既具备专业数据库的准确性,又保留了LLM的自然语言理解能力。

二、RAG技术架构详解

2.1 典型工作流程

  1. 文档处理阶段
    • 文档加载 → 文本分块 → 向量编码 → 存储索引
  2. 查询阶段
    • 问题向量化 → 相似度检索 → 上下文组合 → 生成回答

2.2 关键技术组件

组件 作用 常用工具
文本分块 将文档分割为语义单元 RecursiveCharacterTextSplitter
向量编码 将文本转化为数学向量 OllamaEmbeddings, HuggingFace Embeddings
向量数据库 存储和检索向量 FAISS, Chroma, Pinecone
检索器 执行相似度搜索 VectorStoreRetriever
提示工程 控制生成逻辑 LangChain Prompt Templates

三、代码实现深度解析

3.1 知识库构建(build_rag_db.py)

def build_rag_db(input_file, db_path, base_url):
    # 文档读取与分块
    documents = TextLoader(input_file).load()
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000, 
        chunk_overlap=200
    )
    chunks = text_splitter.split_documents(documents)
    
    # 向量编码与存储
    embeddings = OllamaEmbeddings(model="nomic-embed-text")
    vector_db = FAISS.from_documents(chunks, embeddings)
    vector_db.save_local(db_path)

关键参数解析

  • chunk_size=1000: 平衡信息完整性与检索效率
  • chunk_overlap=200: 避免语义断裂的滑动窗口
  • nomic-embed-text: 专为检索优化的嵌入模型

3.2 检索增强生成(query_rag_db.py)

def query_vector_db(question, db_path):
    # 加载知识库
    vector_db = FAISS.load_local(db_path, embeddings)
    
    # 构建检索链
    prompt_template = """
    请依据已知内容用中文回答:
    已知内容:{context}
    问题: {input}
    """
    retrieval_chain = create_retrieval_chain(
        vector_db.as_retriever(),
        create_stuff_documents_chain(
            Ollama(model="
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值