砝码组合
题目内容:
用天平称重时,我们希望用尽可能少的砝码组合称出尽可能多的重量。
如果只有5个砝码,重量分别是1,3,9,27,81。
则它们可以组合称出1到121之间任意整数重量(砝码允许放在左右两个盘中)。
本题目要求编程实现:对用户输入的重量(1~121),
给出砝码组合方案(用加减式表示,减代表砝码放在物品盘)。
例如:
输入:
5
输出:
9-3-1
输入:
19
输出:
27-9+1
要求程序输出的组合总是大数在前小数在后。
输入描述
用户输入的重量(1~121),
输出描述
给出砝码组合方案(用加减式表示,减代表砝码放在物品盘)。
输入样例
19
输出样例
27-9+1
规律题, 可以发现1,3,9,27,81是三的倍数, 故每一个数可以用三进制来表示, 比如19, 可以表示为2 0 1, 而每个砝码只有一个, 2变换为 1 -1 0 1 这里的负1 只是代表输出表达式的时候是减去这个数即27 - 9 + 1, 同理5可以表示为1 2, 根据规则改为2 -1, 再改为 1 -1 -1, 即9 - 3 - 1
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
int num[5];
int main()
{
int n;
cin >> n;
for(int i = 4; i >= 0; i--)
{
int t = pow(3.0, i);
if(n >= t)
{
num[i] = n / t;
n -= num[i] * t;
}
}
for(int i = 0; i <= 4; i++)
{
if(num[i] == 2)
{
num[i] = -1;
num[i + 1]++;
}
}
int i;
for(i = 4; i >= 0; i--)
{
if(num[i] != 0)
{
cout << pow(3.0, i);
break;
}
}
for(int j = i - 1; j >= 0 ; j--)
{
if(num[j] == 0) continue;
else if(num[j] < 0)
cout << "-";
else
cout << "+";
num[i] = abs(num[i]);
cout << pow(3.0, j);
}
}