目录
一、前言
量化交易的优势之处
量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
由于数字货币24*7小时不间断的交易市场的连续性,并且量化交易可以达到高频交易的效果,从数字货币市场入手显然是做量化的很好的起步点。目前数字货币市场仍然是不成熟的。平台交易系统的宕机,k线插针依然是会偶尔出现,对于量化交易也是一种风险所在。不过对于数字货币进行量化交易总体来看依然是利大于弊。因为通过模型的回测训练和时间序列的回测分析,我们可以在最短时间能尝试到数百种模型中最合适的方式。
二、GQNR模型简介
本模型是基于Garch模型预测波动率,通过分位数回归预测波动率的VaR值进而利用非线性回归,例如GA进行拟合来预测未来下一个周期中的上限VaR以及下限VaR,在后文中将这种方法模型简称为GQNR。
1.Garch模块
本板块将会详细介绍策略Garch核心的推导,此方法在金融市场具有一定的普适性,在数字货币上能到达一定预测效果。
1.1Garch定义
ARCH模型的实质是使用残差平方序列的q阶移动平移拟合当期异方差函数值,由于移动平均模型具有自相关系数q阶截尾性,所以ARCH模型实际上只适用于异方差函数短期自相关系数。
但是在实践中,有些残差序列的异方差函数是具有长期自关性,这时使用ARCH模型拟合异方差函数,将会产生很高的移动平均阶数,增加参数估计的难度并最终影响ARCH模型的拟合精度。
为了修正个问题,提出了广义自回归条件异方差模型, 这个模型简记为GARCH(p,q).
GARCH模型实际上就是在ARCH的基础上,增加考虑异方差函数的p阶自回归性而形成,它可以有效的拟合具有长期记忆性的异方差函数。ARCH模型是GARCH模型的一个特例,p=0的GARCH(p,q)模型。
1.2ARCH过程
定义σn是在第n-1个交易周期估计资产在第n个交易周期的波动率,mu为日收益率,那么可以根据最近m个交易周期的收益率进行无偏估计:
σ n 2 = 1 m − 1 ∑ i = 1 m ( μ n − i − μ ‾ ) 2 \sigma _n^2= \frac{1}{m-1} \sum\limits_{i=1}^m {( { \mu_{n-i}- \overline{\mu} } ) ^2}\, σn2=m−11i=1∑m(μn−i−μ)2
做以下变化①将μn-i换成百分比收益率;②将m-1换成m;③假设μ=0,并且这些变化对结果影响不大,根据上式可以将波动率简化为:
σ n 2 = 1 m ∑ i = 1 m μ n − i 2 \sigma _n^2= \frac{1}{m} \sum\limits_{i=1}^m { \mu_{n-i} ^2}\, σn2=m1i=1∑mμn−i2
也就是说每一个周期的波动率的平方具有等权重1/m,由于是估计当前的波动率,距离近的数据应该赋予更高权重,则上式可以更改为:
σ n 2 = ∑ i = 1 m α i μ n − i 2 \sigma _n^2= \sum\limits_{i=1}^m { \alpha_i\mu_{n-i} ^2}\, σn2=i=1∑mαiμn−i2
αi是第i个交易周期的收益率平方的系数,取正值且i越小值越大,权重之和为1。进一步推广,假定存在一个长期的方差率VL,且对应的权重为γ,根据上式可以得到: