数据泛化(面向属性的归纳;个性–>一般化)
1.定义
数据泛化:把较低层次的概念层(例如:年龄的数值范围)用较高层次的概念(例如:青年、中年和 老年)替换来汇总数据。或者通过减少维度在设计较少维度的概念空间汇总数据(例如汇总学生组群时,删除生日和电话号码属性)
2.两种泛化方法
(1)基于数据立方体的数据聚集(data focusing):
a.复杂数据类型和聚集
数据仓库和OLAP工具基于多维数据模型,将数据看书数据立方形式,由维(或属性)和度量(聚集函数)组成。然而许多OLAP系统都限制维是非数值数据,而度量是数值数据。数据库可能包括各种类型的属性,包括数值的,非数值的、空闲的、文本的或者图像的。
b.用户控制和自动处理
数仓中的联机分析处理是用户控制的过程。维的选择和OLAP操作(上卷、下钻、切片、切块)等的使用都是由用户指挥和控制。
(2)面向属性的归纳
数据库查询手机数据–>根据属性不同值进行泛化,一般采用两种方式:
属性删除:初始工作某个属性由大量不同值,但是该属性没有泛化操作符或他的较高层概念用其他属性表示
属性泛化:初始工作的某个属性有大量不同值,并且该属性上存在泛化操作符的集合,应当选择一个泛化操作符,并将它用于该属性。
总结:属性有大量不同值应当进一步泛化。
3.泛化控制
属性泛化太高–导致过分泛化 ,产生无用信息
泛化不足–>信息太少
方法一:属性泛化阈值控制
设定属性阈值,通常取值2~8,根据实际值可以上钻或者下钻调整
方法二:广义关系阈值控制
设置元组个数,通常10~30
4.面向属性归纳的实现过程
(1)算法的第一步基本是关系查询,把任务相关的数据收集到工作关系W中。其有效性依赖于所用 的查询处理方法。
(2)收集初始关系上的统计量。这最多需要扫描一次该关系。
(3)导出主关系P通过扫描工作关系的每个元组并吧广义元组插入到P中完成。
5.类比较的面向属性归纳
(1)类比较的过程
a.数据收集:通过查询处理收集数据库中的相关数据,并把它划分成一个目标类和一个或多个对比类。
b.维相关分析:有多个维需要在类上进行维相关分析。
c.同步泛化:泛化在目标类上进行,泛化到用户或领域专家指定的维阈值控制的层,产生主目标类关系。
d.导出比较的表示