数据仓库设计

数仓设计

  • 维度建模

    以维度为标准 开展数据的分析需求

    适用于面向分析领域的理论。比如分析型数据库 数据仓库 数据集市(OLAP)

    • 事实表

      分析主题的客观事件度量  是分析主题的数据聚集  事实表中一条记录往往对应着客观的一个事件
      往往是一堆主键的聚集 
    • 维度表

      所谓的维度就是指看待问题的角度 可以通过不同的维度去分析同一个事实表 得出不同的分析结果
      维度表可以跟事实表进行关联查询
  • 多维度数据分析

    所谓的多维数据分析就是指通过不同维度的聚集计算出某种度量值。

    常见度量值:max min count sum avg topN

    举个栗子:统计来自于北京女性24岁未婚的过去三年购物金额最多的前三个。
    ​
    维度:地域  性别  年龄  婚姻  时间
    度量值:sum(订单金额)--->top3
  • 维度建模的三种模式

    • 星型模式

      一个事实表多个维度表 维度表之间没有关系  维度表跟事实表进行关联  企业数仓发展初期常见的模型
    • 雪花模式

      一个事实表多个维度表  维度表可以继续关联维度表  不利于后期维护 企业中尽量避免演化成该种模型
    • 星座模式

      多个事实表 多个维度表   某些维度表可以共用  企业数仓发展中后期常见的模型
  • 维度建模
    	1、星型模式		重点
    		在项目初期会用到,表的数量较少
    	2、雪花模式
    		不推荐使用,关联复杂,不利于后期维护
    	3、星座模式		重点
    		在项目后期使用,可以找到相同的分析维度,建立关联,多个星型的模式
    多维度数据分析
    	时间维度、地理维度、内容维度、人群维度(男、女)

     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hi洛一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值