介绍:
窗口函数也称为 OLAP 函数。OLAP 是 OnLine AnalyticalProcessing 的简称,意思是对数据库数据进行实时分析处理。窗口函数是一种用于执行聚合计算和排序操作的功能强大的sql函数。它们可以在查询结果集中创建一个窗口(window),并在该窗口上进行计算,而不影响结果集的整体。
窗口函数通常与over子句一起使用,以定义窗口的范围。over子句可以指定窗口的排序方式、分区方式和边界等。
为了便于理解,称之为 窗口函数。常规的 select 语句都是对整张表进行查询,而窗口函数可以让我们有选择的去某一部分数据进行汇总、计算和排序。
用法:
窗口函数的通用形式:
<窗口函数> over ([ partition by <列名> ] [ order by <排序用列名> ])
[ ]中的内容可以省略。
窗口函数最关键的是搞明白关键字 partiton by 和 order by 的作用。
- partiton by 子句 可选参数,指示如何将查询行划分为组,类似于 group by 子句的分组功能,但是 partition by 子句并不具备 group by 子句的汇总功能,并不会改变原始表中记录的行数。
- order by 子句 可选参数,指示如何对每个分区中的行进行排序,即决定窗口内,是按那种规则(字段)来排序的。
注意:
虽然 partiton by 子句 和 order by 子句 都是可选参数,但是两个参数不能同时没有(最少二选一)。不然, <窗口函数> over( ) 这种用法没用实际意义(窗口由所有查询行组成,窗口函数使用所有行计算结果)。
分类:
常用的窗口函数有:
- row_number():为每一行返回一个唯一的数值,通常用于给结果集中的行进行编号。
- rank()和dense_rank():根据指定的排序顺序,为结果集中的每一行分配一个排名。rank()在遇到相同的值时会跳过相同的排名,而dense_rank()不会跳过。
- lag()和lead():lag函数用于获取当前行之前的某一行的值,lead函数用于获取当前行之后的某一行的值。它们与排序有关,可以用于查找前一行或后一行的值。
- sum()、avg()、min()、max()等聚合函数:这些聚合函数可以在窗口范围内进行计算,并返回结果集中每一行的聚合值。
除了以上列举的函数外,窗口函数还有其他一些类型和变种,可以根据具体的需求选择使用。
窗口函数在sql中的应用非常广泛,可以用于计算移动平均、累计求和、分组内排序等。它们提供了一种灵活且高效的方式来处理复杂的查询需求。