大数乘法的奇妙技巧

本文探讨了大数乘法的两种方法,包括基于小学乘法规则的时间复杂度为O(n^2)的方法,以及使用分治策略的Karatsuba算法,其时间复杂度为O(log2 3)。对于Karatsuba算法,文章解释了切分规则并讨论了如何扩展到更多的拆分方式,如Toom-Cook算法,尽管这会带来更复杂的合并步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大数乘法

解决问题:
A * B = K
两种方法及其衍生:

  1. 小学乘法(时间复杂度O(n2))
          3   4   5
x         1   8   7
——————————————————————
		(21)(28)(35)
	(24)(32)(40)
( 3)( 4)( 5)
——————————————————————
( 3)(28)(58)(68)(35)   ——> (6)(4)(5)(1)(5) 

发现它的两点规则:

  • 规则一:假设a有ka位,b有kb位,那么a*b最多有kakb位。(可以以999 * 999 为例,它是三位数三位数里最大的数,是6位)
  • 规则二:”a的第i位和b的第j位相乘,在结果里应该处于第i+j位。注意:因为最高位如果进位,结果数组左边会越界,因此实际计算中,把结果放在第i+j+1位(这里的位是指数组下标,如345参与运算时写作[3, 4, 5], 第0位为3)

依葫芦画瓢,用代码的形式写出它。如果有人说“我小学不是这么做的”,这是因为最后考虑进位比较方便~

	def bigNumsMultiply(a, b):
		'''
		input: 
		a : List
		b : List
		output:
		res: List
		'''
		if a[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值