(力扣—动态规划)最小路径和
问题描述:
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:
每次只能向下或者向右移动一步。
思想:
这是一道非常常规且基础的动态规划的题目,非常适合自己去理解dp的解题思路。
本解采用最基础的解法。
dp方程:
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]
解释:
其实很简单,题目说了只能向右或者向下走一步,所以当前步骤的最小路径和就是上一步(从上方向下方走,或从左方向右方走)的最小路径和加上当前步骤的grid权值。所以就需要初始化第0行与第0列为本行或本列当前位置和。
代码
int minPathSum(vector<vector<int>>& grid) {
vector<vector<int>> dp(grid.size(), vector<int>(grid[0