9.17 进阶hive 理论知识

explain select city_code,count(1) as cnt from user where access=’WIFI’ group by city_code order by cnt desc limit 5;

在sql语句前添加explain 查看实行流程

MR Job的基本过程
input—combiner—-shuffle—-output

一个InputSplit输入到map,会运行我们实现的Mapper的处理逻辑,对数据进行映射操作。
map输出时,会首先将输出中间结果写入到map自带的buffer中(buffer默认大小为100M,可以通过io.sort.mb配置)。

map自带的buffer使用容量达到一定限制(默认0.80或80%,可以通过io.sort.spill.percent配置),一个后台线程会准备将buffer中的数据写入到磁盘。

这个后台线程在将buffer中数据写入磁盘之前,会首先将buffer中的数据进行partition(分区,partition数为Reducer的个数),对于每个的数据会基于Key进行一个in-memory排序。

排序后,会检查是否配置了Combiner,如果配置了则直接作用到已排序的每个partition的数据上,对map输出进行化简压缩(这样写入磁盘的数据量就会减少,降低I/O操作开销)。

现在可以将经过处理的buffer中的数据写入磁盘,生成一个文件(每次buffer容量达到设置的门限,都会对应着一个写入到磁盘的文件)。
map任务结束之前,会对输出的多个文件进行合并操作,合并成一个文件

reduce阶段,每个reduce任务开始从多个map上拷贝属于自己partition
每个reduce任务拷贝的map任务结果的指定partition,也是先将数据放入到自带的一个buffer中,如果配置了map结果进行压缩,则这时要先将数据解压缩后放入buffer中。

reduce自带的buffer使用容量达到一定门限(默认0.66或66%,可以通过mapred.job.shuffle.merge.percent配置),或者buffer中存放的map的输出的数量达到一定门限(默认1000,可以通过mapred.inmem.merge.threshold配置),buffer中的数据将会被写入到磁盘中。
在将buffer中多个map输出合并写入磁盘之前,如果设置了Combiner,则会化简压缩合并的map输出。

当属于该reducer的map输出全部拷贝完成,则会在reducer上生成多个文件,这时开始执行合并操作,并保持每个map输出数据中Key的有序性,将多个文件合并成一个文件(在reduce端可能存在buffer和磁盘上都有数据的情况,这样在buffer中的数据可以减少一定量的I/O写入操作开销)。

最后,执行reduce阶段,运行我们实现的Reducer中化简逻辑,最终将结果直接输出到HDFS中(因为Reducer运行在DataNode上,输出结果的第一个replica直接在存储在本地节点上)。

在 Hive 中,表中的一个 Partition 对应于表下的一个目录,所有的 Partition 的数据都存储在对应的目录中。用户在加载数据的时候必须显示的指定该部分数据放到哪个分区。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值