FEM笔记
方雨岚(Yulan Fang)
这个作者很懒,什么都没留下…
展开
-
Galerkin method 热传导公式推导过程
以下公式推导来源于我2020 fall学期的有限元课程作业,作业并没有反馈推导过程和结果是否百分之百正确,在这里供各位同学参考,如果有错误也欢迎指出。代码实现可以参考deal.ii的step 26。最后分享一下如何用Matlab显示vtk格式的数据,因为课程要求3D展示2d的算例数据,z轴为温度,而matlab不是很好直接处理vtk的数据。这里我们可以用paraview先打开vtk的数据,然后导出为csv格式文件,此时用matlab打开,便易于处理了。...原创 2020-12-19 23:29:42 · 2212 阅读 · 6 评论 -
step26 heat conduction theta scheme
在这个算例中,我们需要注意的是,当theta大于等于0.5时,算例才会无条件收敛,误差不会线性增加,当theta为0显式法对时间步长有一定的要求。原创 2020-12-19 23:16:17 · 208 阅读 · 1 评论 -
deal.ii step 5 coefficient Lecture 14 笔记
template <int dim>double coefficient(const Point<dim> &p){ if (p.square() < 0.5 * 0.5) return 20; else return 1;}它的作用是,对于每一个格点p,它都会计算出该点的coefficient值const double current_coefficient = coefficient<dim>(fe_values.原创 2020-11-02 16:15:28 · 139 阅读 · 0 评论 -
deal.ii step-3 Lecture 10笔记
一个Laplace solverΩ=[0,1]2f(x)=1类 Step3class Step3{ public: Step3 (); void run (); private: void make_grid (); void setup_system (); void assemble_system (); void solve (); void output_results () const; Triangulation&原创 2020-11-01 10:27:11 · 308 阅读 · 0 评论 -
deal.ii step-2 Lecture 9笔记
step1讲了meshstep2讲DOF,shape functions储存在mesh的位置(vertices,reference cell)虽然不知道为什么,但看lecture的确是比tutorial的文字更好理解内容grid生成mesh与step1差不多,只是这里会返回生成的mesh类DoFHandler用于将shape function与vertices联系起来DoFHandler<2> dof_handler(triangulation); distribute_dofs(原创 2020-10-31 13:49:34 · 277 阅读 · 0 评论 -
deal.ii step-1 Lecture 5,6笔记
Triangulations 意为域的子域等同于mesh,储存了cellTriangulation类是cell的集合,cell即FEM中的element大体是先定义triangulation,再使用GridGenerator::hyper_cube生成,其中refine_global这里是设置为4,意思是把每个方框都四分一下。即2D下一个方形分为4个方形,3D下一个立方对应的是分成8个小立方。后续可以通过grid out输出。hypershell是定义两个圆形之间的区域如果需要循环Triangul原创 2020-10-25 15:36:08 · 343 阅读 · 0 评论 -
FEM边界
文章目录αu'+βu=γ仅当α为0仅当β为0都不为零此外取0划1αu’+βu=γ仅当α为0即βu=γ,为essential BC/Dirichlet BC。仅当β为0即αu’=γ,为natural BC/Newmann BC。都不为零为Robin BC/Mixed BC。此外还有PDE。取0划1因为K矩阵为对角斜线有值的矩阵,而单位元矩阵为(deg+1)×(deg+1)的矩阵,所以只需将对应BC的值写入F中,这样便可取0划1。...原创 2020-10-19 05:51:10 · 291 阅读 · 0 评论 -
答群友提问为何推导弱形式需要trial solution平方可积,弱形式如何推导,为何弱形式w(1)=0
文章目录为什么弱形式需要trial solution平方可积弱形式推导为什么弱形式w(1)=0为什么弱形式需要trial solution平方可积书本为 The finite element method linear static and dynamic finite element analysis作者为 Thomas J. R. Hughes众所周知,FEM是一种Approximation方法,所以对于这种最小势能原理的微分方程,要保证变性能存在,此处1.3.1必须满足。下图源于网上的.原创 2020-10-17 01:30:09 · 565 阅读 · 1 评论