label studio中 mmdetection示例需要导入的依赖及遇到的问题

需要导入的依赖

pip install torch==2.1.0  -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install -U openmim -i https://pypi.tuna.tsinghua.edu.cn/simple
mim install mmdet

pip install --upgrade label-studio-sdk -i https://pypi.tuna.tsinghua.edu.cn/simple
python -m pip install -U pydantic spacy -i https://pypi.tuna.tsinghua.edu.cn/simple

问题

    1. TypeError: issubclass() arg 1 must be a class
    1. 找不到 pydantic 中的 field_serializer
    1. ModuleNotFoundError: No module named ‘mmcv._ext‘
    1. ImportError: DLL load failed while importing _ext: 找不到指定的模块

解决办法

  1. 问题1,2都是由于pydantic的兼容问题导致的, 使用的正确的包即可: python -m pip install -U pydantic spacy -i https://pypi.tuna.tsinghua.edu.cn/simple ,版本是2.8.2
    在这里插入图片描述
  2. 问题3,4都是mmcv 和 torch兼容的问题, mmcv和torch都用2.1.0, mmdet用的3.3.0, 命令:
    pip install torch==2.1.0  -i https://pypi.tuna.tsinghua.edu.cn/simple
    
    pip install -U openmim -i https://pypi.tuna.tsinghua.edu.cn/simple
    mim install mmdet
    

其他注意事项

  1. mmcv需要使用2.2.0以下的版本(日志里面会显示mmcv的版本范围 ),导致torch需要使用对应的版本,否则也会不兼容, 可以通过https://download.openmmlab.com/mmcv/dist/cpu/torch2.1.0/index.html 查看版本对应信息,改变url上的对应的版本, 会显示出适用的mmcv版本, 我这里使用的torch是2.1.0
    在这里插入图片描述

  2. 通过以下命令, 会自动安装对应的mmcv版本

pip install -U openmim -i https://pypi.tuna.tsinghua.edu.cn/simple
mim install mmdet

总结

在使用过程中解决依赖包冲突的问题花费的时间很长,并且在网上搜索的关于mmdection 依赖问题的信息太零散了, 这里做个总结, 我这边就是按照开头的顺序依次install解决的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值