使用 arxiv-sanity 实时跟进自己研究领域的Paper

arxiv-sanity是一个针对arxiv.org的科研辅助工具,提供预览、相关度排序、个人图书馆、推荐系统等功能,帮助用户高效浏览和管理最新的学术论文。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

arxiv-sanity introduction video
Paper+Code的研究模式 (paperwithcode)

arxiv-sanity介绍

arxiv.org是一个非常大的预印本资源库,里面有大量的最新的论文,但缺点是浏览、搜索和排序不是很方便。这个资源库每天会更新大量的论文,如果通过手动搜索和浏览则效率很低,高引用的好文章难以及时的找到并阅读,造成时间的浪费。从而,arxiv-sanity 因运而生。
在这里插入图片描述

arxiv-sanity基本功能

1、便捷的预览
首先,arxiv-sanity在展示最新更新的文献时,提供了可读性更强的缩略图预览模式方便读者来快速预览,并在缩略图下方的绿色区域显示文献的abstract 。
在这里插入图片描述
2.感兴趣相关度排序
点击右上角的 ‘show similar’,文献列表会按照与这篇文章的相关度进行排序,接下来会看到 arxiv 上所有关于 instance segmentation 的论文。这个功能是基于TF-DF算法来实现的,效果很好。
在这里插入图片描述

3.个人图书馆
注册和登录账户之后,点击右上角的那个保存图标就可以将感兴趣的 paper 收藏到个人图书馆
在这里插入图片描述
4.感兴趣推荐系统
arxiv-sanity 还可以通过收藏的内容给你推荐你也许会感兴趣的论文。背后的实现原理是通过将Library 中的论文标记为positive,Library之外的论文标记为negative,然后基于bigram文本特征提取训练 personal SVM,最后在reconmmended 标签里推荐给你,并可通过设置时间进一步筛选文献。
在这里插入图片描述
5.看看大家都在看什么
top recent 标签展示的是arxiv-sanity上被用户收藏最多的文献。这些文献也可以按照时间来筛选。即使你不是注册用户,也可以浏览到大家都在收藏的文献。

6.网站代码开源
在页面左上方可以看到,arxiv-sanity只展示machine learning的论文,如CV,CL等ML的分支领域,因为这是arxiv-sanity作者自己的研究领域。作者已经把 arxiv-sanity 开源了,所以如果你想根据自己的研究领域新建自己的arxiv-sanity,可以去GitHub fork arxiv-sanity-preserver
在这里插入图片描述

cs.CV: Computer Vision and Pattern Recognition 计算机视觉与模式识别;
cs.CL:Computation and Language 计算语言学;
cs.LG:Learning 机器学习(计算机科学);
cs.AI:Artificial Intelligence 人工智能;
cs.NE:Neural and Evolutionary Computing 神经与演化计算;
stat.ML:Machine Learning 机器学习(统计学)

要高效管理计算机视觉领域的文献并跟踪最新研究,你需要熟练使用Zotero及其相关插件和扩展。以下是详细的步骤和建议: 参考资源链接:[Zotero:文献管理与科研网站指南](https://wenku.csdn.net/doc/1hnmg4tzyu?spm=1055.2569.3001.10343) 首先,确保你已经安装了最新版本的Zotero,并创建了在线账户以便同步。然后,安装arXiv-sanity插件,它会为***提供一个更为友好和功能丰富的界面,让你能够更方便地浏览和搜索计算机视觉相关的研究论文。通过该插件,你可以设置关注特定作者或关键词,及时获得研究更新。 接下来,安装Aminer插件。Aminer是一个集成了大数据分析的科技情报平台,它可以帮助你跟踪计算机视觉领域内的重要研究人员、机构以及学术文章的影响力。利用Aminer的分析工具,你可以快速了解某个研究领域研究动态和趋势。 另外,PapersWithCode插件能够让你直接链接论文与其对应的代码和数据集,这对于计算机视觉研究者来说是非常有价值的资源。你可以通过该插件了解到某个研究的实际应用情况,以及如何基于现有工作进行进一步的实验和研究。 此外,利用Zotero的高级搜索功能,你能够根据期刊(如CVPR、ECCV、ICCV)和会议名称过滤文献,以便追踪特定领域的最新研究成果。你可以创建智能收藏夹,自动收集符合特定条件的文献条目。 最后,Zotero支持将文献信息导出为BibTeX格式,这样你可以轻松将这些信息集成到你的学术论文中。同时,Zotero还能够直接与Microsoft Word集成,实现引用和参考文献的自动化插入,极大地提高了写作效率。 总结来说,通过熟练使用Zotero及其插件和扩展,你可以有效地管理计算机视觉领域的文献,并且及时跟踪最新的研究动态。这将为你的研究工作提供强有力的文献支持和信息来源。 参考资源链接:[Zotero:文献管理与科研网站指南](https://wenku.csdn.net/doc/1hnmg4tzyu?spm=1055.2569.3001.10343)
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值