LeetCode 第188题:买卖股票的最佳时机 IV
题目描述
给定一个整数数组 prices
,它的第 i
个元素 prices[i]
是一支给定的股票在第 i
天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k
笔交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
难度
困难
题目链接
示例
示例 1:
输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
示例 2:
输入:k = 2, prices = [3,2,6,5,0,3]
输出:7
解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。
提示
0 <= k <= 100
0 <= prices.length <= 1000
0 <= prices[i] <= 1000
解题思路
方法一:动态规划
这是一个经典的股票交易问题,可以使用动态规划解决。我们定义状态 dp[i][j][0/1]
表示第 i
天,已经进行了 j
次交易,当前持有/不持有股票的最大利润。
关键点:
- 状态定义:
dp[i][j][0]
表示第 i 天,已经完成 j 笔交易,手上没有股票的最大利润;dp[i][j][1]
表示第 i 天,已经完成 j 笔交易,手上持有股票的最大利润 - 状态转移方程:
dp[i][j][0] = max(dp[i-1][j][0], dp[i-1][j][1] + prices[i])
:第 i 天不持有股票,可能是昨天也不持有,或者昨天持有但今天卖出dp[i][j][1] = max(dp[i-1][j][1], dp[i-1][j-1][0] - prices[i])
:第 i 天持有股票,可能是昨天也持有,或者昨天不持有但今天买入(这样就完成了 j 笔交易中的一次买入)
- 特殊情况处理:当 k 大于数组长度的一半时,问题退化为允许无限次交易
时间复杂度:O(nk),其中 n 是天数,k 是最大交易次数
空间复杂度:O(nk),可以优化到 O(k)
方法二:优化的动态规划(状态压缩)
我们可以对方法一进行空间优化,因为每一天的状态只与前一天的状态有关,所以可以使用滚动数组优化空间。
关键点:
- 使用两个长度为 k+1 的数组记录当前不持有股票和持有股票的最大利润
- 从前往后进行状态转移,更新每一天的状态
时间复杂度:O(n*k),其中 n 是天数,k 是最大交易次数
空间复杂度:O(k)
代码实现
C# 实现
public class Solution {
public int MaxProfit(int k, int[] prices) {
if (prices == null || prices.Length <= 1 || k <= 0) {
return 0;
}
int n = prices.Length;
// 如果k很大,问题退化为允许无限次交易
if (k >= n / 2) {
return MaxProfitInfinite(prices);
}
// dp[i][0] 表示第i次交易后不持有股票的最大利润
// dp[i][1] 表示第i次交易后持有股票的最大利润
int[,] dp = new int[k + 1, 2];
// 初始化:第0天完成i次交易的情况
for (int i = 0; i <= k; i++) {
dp[i, 0] = 0; // 不持有股票,利润为0
dp[i, 1] = -prices[0]; // 持有股票,利润为-prices[0]
}
// 动态规划过程
for (int i = 1; i < n; i++) {
for (int j = 1; j <= k; j++) {
// 第i天不持有股票:可能是前一天也不持有,或者前一天持有但今天卖出
dp[j, 0] = Math.Max(dp[j, 0], dp[j, 1] + prices[i]);
// 第i天持有股票:可能是前一天也持有,或者前一天不持有(完成了j-1次交易)但今天买入
dp[j, 1] = Math.Max(dp[j, 1], dp[j - 1, 0] - prices[i]);
}
}
return dp[k, 0];
}
// 处理无限次交易的情况(贪心算法)
private int MaxProfitInfinite(int[] prices) {
int maxProfit = 0;
for (int i = 1; i < prices.Length; i++) {
if (prices[i] > prices[i - 1]) {
maxProfit += prices[i] - prices[i - 1];
}
}
return maxProfit;
}
}
Python 实现
class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
if not prices or len(prices) <= 1 or k <= 0:
return 0
n = len(prices)
# 如果k很大,问题退化为允许无限次交易
if k >= n // 2:
return self.maxProfitInfinite(prices)
# dp[i][0] 表示第i次交易后不持有股票的最大利润
# dp[i][1] 表示第i次交易后持有股票的最大利润
dp = [[0, -prices[0]] for _ in range(k + 1)]
dp[0][1] = float('-inf') # 不允许在没有交易的情况下持有股票
# 动态规划过程
for i in range(1, n):
for j in range(1, k + 1):
# 第i天不持有股票
dp[j][0] = max(dp[j][0], dp[j][1] + prices[i])
# 第i天持有股票
dp[j][1] = max(dp[j][1], dp[j-1][0] - prices[i])
return dp[k][0]
# 处理无限次交易的情况(贪心算法)
def maxProfitInfinite(self, prices: List[int]) -> int:
max_profit = 0
for i in range(1, len(prices)):
if prices[i] > prices[i-1]:
max_profit += prices[i] - prices[i-1]
return max_profit
C++ 实现
class Solution {
public:
int maxProfit(int k, vector<int>& prices) {
if (prices.empty() || prices.size() <= 1 || k <= 0) {
return 0;
}
int n = prices.size();
// 如果k很大,问题退化为允许无限次交易
if (k >= n / 2) {
return maxProfitInfinite(prices);
}
// dp[i][0] 表示第i次交易后不持有股票的最大利润
// dp[i][1] 表示第i次交易后持有股票的最大利润
vector<vector<int>> dp(k + 1, vector<int>(2, 0));
// 初始化:第0天完成i次交易的情况
for (int i = 0; i <= k; i++) {
dp[i][0] = 0; // 不持有股票,利润为0
dp[i][1] = -prices[0]; // 持有股票,利润为-prices[0]
}
// 动态规划过程
for (int i = 1; i < n; i++) {
for (int j = 1; j <= k; j++) {
// 第i天不持有股票
dp[j][0] = max(dp[j][0], dp[j][1] + prices[i]);
// 第i天持有股票
dp[j][1] = max(dp[j][1], dp[j-1][0] - prices[i]);
}
}
return dp[k][0];
}
private:
// 处理无限次交易的情况(贪心算法)
int maxProfitInfinite(const vector<int>& prices) {
int maxProfit = 0;
for (int i = 1; i < prices.size(); i++) {
if (prices[i] > prices[i - 1]) {
maxProfit += prices[i] - prices[i - 1];
}
}
return maxProfit;
}
};
性能分析
各语言实现的性能对比:
实现语言 | 执行用时 | 内存消耗 | 特点 |
---|---|---|---|
C# | 92 ms | 38.6 MB | 优化的动态规划实现,空间复杂度为O(k) |
Python | 112 ms | 18.7 MB | 使用二维列表实现动态规划 |
C++ | 8 ms | 10.6 MB | 性能最优,使用vector实现动态规划 |
补充说明
代码亮点
- 特殊情况快速处理:当 k 大于数组长度的一半时,使用贪心算法处理无限次交易
- 状态压缩优化:使用滚动数组优化空间复杂度从 O(n*k) 到 O(k)
- 动态规划状态转移方程设计清晰,易于理解
动态规划的思考过程
股票交易问题的动态规划思路是经典的状态定义和转移模式:
- 首先定义状态,包括天数、交易次数和是否持有股票
- 然后考虑状态转移:每天都有"买入"、"卖出"或"不操作"三种可能
- 最后考虑边界情况:初始状态和特殊情况处理
在本题中,由于交易次数有限,我们需要在动态规划状态中加入"已完成的交易次数"这一维度。当 k 较大时,问题可以简化为贪心算法。
常见错误
- 没有处理 k 大于数组长度一半的特殊情况,导致内存超限
- 状态定义不清晰,混淆了"已完成交易次数"和"正在进行的交易"
- 初始化状态错误,尤其是对于持有股票状态的初始化
- 没有考虑空数组或 k=0 的边界情况