LeetCode 第207题:课程表
题目描述
你这个学期必须选修 numCourses
门课程,记为 0
到 numCourses - 1
。
在选修某些课程之前需要一些先修课程。先修课程按数组 prerequisites
给出,其中 prerequisites[i] = [ai, bi]
表示如果要学习课程 ai
则必须先学习课程 bi
。
例如,先修课程对 [0, 1]
表示:想要学习课程 0
,你需要先完成课程 1
。
请你判断是否可能完成所有课程的学习?如果可以,返回 true
;否则,返回 false
。
难度
中等
题目链接
示例
示例 1:
输入:numCourses = 2, prerequisites = [[1,0]]
输出:true
解释:总共有 2 门课程。学习课程 1 之前,你需要完成课程 0。这是可能的。
示例 2:
输入:numCourses = 2, prerequisites = [[1,0],[0,1]]
输出:false
解释:总共有 2 门课程。学习课程 1 之前,你需要先完成课程 0;并且学习课程 0 之前,你还应先完成课程 1。这是不可能的。
提示
1 <= numCourses <= 2000
0 <= prerequisites.length <= 5000
prerequisites[i].length == 2
0 <= ai, bi < numCourses
- 所有
[ai, bi]
互不相同
解题思路
这个问题实际上是判断有向图中是否存在环。如果存在环,则表示存在循环依赖,无法完成所有课程;如果不存在环,则可以完成所有课程。可以使用拓扑排序或者DFS来检测图中是否存在环。
方法一:拓扑排序(BFS)
拓扑排序的基本思想是:
- 计算每个节点的入度(有多少边指向这个节点)
- 将所有入度为0的节点加入队列
- 每次从队列中取出一个节点,将其所有邻接节点的入度减1
- 如果减1后某个节点的入度变为0,则将其加入队列
- 重复3-4,直到队列为空
- 如果最终访问的节点数等于课程总数,则说明不存在环,可以完成所有课程
关键点:
- 使用邻接表表示图结构
- 统计每个节点的入度
- BFS遍历入度为0的节点
时间复杂度:O(V+E),其中V为节点数,E为边数
空间复杂度:O(V+E)
方法二:深度优先搜索(DFS)
DFS方法是:
- 对每个未访问的节点进行DFS
- 在DFS过程中,标记节点为"正在访问"
- 如果在DFS过程中,遇到了一个"正在访问"的节点,说明存在环
- 当一个节点的所有邻接节点都被访问过后,标记该节点为"已访问"
关键点:
- 使用两个标记数组,一个标记节点是否被访问过,一个标记节点是否在当前DFS路径上
- 递归实现DFS
- 通过回溯更新路径标记
时间复杂度:O(V+E)
空间复杂度:O(V+E)
代码实现
C# 实现
方法一:拓扑排序(BFS)
public class Solution {
public bool CanFinish(int numCourses, int[][] prerequisites) {
// 构建邻接表和入度数组
List<int>[] adjacency = new List<int>[numCourses];
int[] indegree = new int[numCourses];
for (int i = 0; i < numCourses; i++) {
adjacency[i] = new List<int>();
}
foreach (var prerequisite in prerequisites) {
int course = prerequisite[0];
int prereq = prerequisite[1];
adjacency[prereq].Add(course); // prereq -> course
indegree[course]++;
}
// 将所有入度为0的节点加入队列
Queue<int> queue = new Queue<int>();
for (int i = 0; i < numCourses; i++) {
if (indegree[i] == 0) {
queue.Enqueue(i);
}
}
// BFS
int count = 0;
while (queue.Count > 0) {
int curr = queue.Dequeue();
count++;
foreach (int next in adjacency[curr]) {
indegree[next]--;
if (indegree[next] == 0) {
queue.Enqueue(next);
}
}
}
return count == numCourses;
}
}
方法二:深度优先搜索(DFS)
public class Solution {
public bool CanFinish(int numCourses, int[][] prerequisites) {
// 构建邻接表
List<int>[] adjacency = new List<int>[numCourses];
for (int i = 0; i < numCourses; i++) {
adjacency[i] = new List<int>();
}
foreach (var prerequisite in prerequisites) {
int course = prerequisite[0];
int prereq = prerequisite[1];
adjacency[prereq].Add(course); // prereq -> course
}
// 0: 未访问, 1: 正在访问, 2: 已访问
int[] visited = new int[numCourses];
for (int i = 0; i < numCourses; i++) {
if (visited[i] == 0) {
if (HasCycle(i, adjacency, visited)) {
return false;
}
}
}
return true;
}
private bool HasCycle(int course, List<int>[] adjacency, int[] visited) {
// 如果该节点正在被访问,说明存在环
if (visited[course] == 1) {
return true;
}
// 如果该节点已经被访问过,确认没有环
if (visited[course] == 2) {
return false;
}
// 标记为正在访问
visited[course] = 1;
// 遍历所有邻接节点
foreach (int next in adjacency[course]) {
if (HasCycle(next, adjacency, visited)) {
return true;
}
}
// 标记为已访问
visited[course] = 2;
return false;
}
}
Python 实现
方法一:拓扑排序(BFS)
from collections import defaultdict, deque
class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
# 构建邻接表和入度数组
adjacency = defaultdict(list)
indegree = [0] * numCourses
for course, prereq in prerequisites:
adjacency[prereq].append(course) # prereq -> course
indegree[course] += 1
# 将所有入度为0的节点加入队列
queue = deque([i for i in range(numCourses) if indegree[i] == 0])
# BFS
count = 0
while queue:
curr = queue.popleft()
count += 1
for next_course in adjacency[curr]:
indegree[next_course] -= 1
if indegree[next_course] == 0:
queue.append(next_course)
return count == numCourses
方法二:深度优先搜索(DFS)
from collections import defaultdict
class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
# 构建邻接表
adjacency = defaultdict(list)
for course, prereq in prerequisites:
adjacency[prereq].append(course) # prereq -> course
# 0: 未访问, 1: 正在访问, 2: 已访问
visited = [0] * numCourses
def has_cycle(course):
# 如果该节点正在被访问,说明存在环
if visited[course] == 1:
return True
# 如果该节点已经被访问过,确认没有环
if visited[course] == 2:
return False
# 标记为正在访问
visited[course] = 1
# 遍历所有邻接节点
for next_course in adjacency[course]:
if has_cycle(next_course):
return True
# 标记为已访问
visited[course] = 2
return False
for i in range(numCourses):
if visited[i] == 0:
if has_cycle(i):
return False
return True
C++ 实现
方法一:拓扑排序(BFS)
class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
// 构建邻接表和入度数组
vector<vector<int>> adjacency(numCourses);
vector<int> indegree(numCourses, 0);
for (const auto& prerequisite : prerequisites) {
int course = prerequisite[0];
int prereq = prerequisite[1];
adjacency[prereq].push_back(course); // prereq -> course
indegree[course]++;
}
// 将所有入度为0的节点加入队列
queue<int> q;
for (int i = 0; i < numCourses; i++) {
if (indegree[i] == 0) {
q.push(i);
}
}
// BFS
int count = 0;
while (!q.empty()) {
int curr = q.front();
q.pop();
count++;
for (int next : adjacency[curr]) {
indegree[next]--;
if (indegree[next] == 0) {
q.push(next);
}
}
}
return count == numCourses;
}
};
方法二:深度优先搜索(DFS)
class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
// 构建邻接表
vector<vector<int>> adjacency(numCourses);
for (const auto& prerequisite : prerequisites) {
int course = prerequisite[0];
int prereq = prerequisite[1];
adjacency[prereq].push_back(course); // prereq -> course
}
// 0: 未访问, 1: 正在访问, 2: 已访问
vector<int> visited(numCourses, 0);
for (int i = 0; i < numCourses; i++) {
if (visited[i] == 0) {
if (hasCycle(i, adjacency, visited)) {
return false;
}
}
}
return true;
}
private:
bool hasCycle(int course, const vector<vector<int>>& adjacency, vector<int>& visited) {
// 如果该节点正在被访问,说明存在环
if (visited[course] == 1) {
return true;
}
// 如果该节点已经被访问过,确认没有环
if (visited[course] == 2) {
return false;
}
// 标记为正在访问
visited[course] = 1;
// 遍历所有邻接节点
for (int next : adjacency[course]) {
if (hasCycle(next, adjacency, visited)) {
return true;
}
}
// 标记为已访问
visited[course] = 2;
return false;
}
};
性能分析
各语言实现的性能对比:
实现语言 | 方法 | 执行用时 | 内存消耗 | 特点 |
---|---|---|---|---|
C# | 拓扑排序 | 100 ms | 44.5 MB | 实现简单,易于理解 |
C# | DFS | 96 ms | 44.4 MB | 递归实现,代码简洁 |
Python | 拓扑排序 | 96 ms | 18.5 MB | 使用defaultdict和deque,代码简洁 |
Python | DFS | 100 ms | 18.3 MB | 递归深度可能受限,但空间效率较好 |
C++ | 拓扑排序 | 20 ms | 13.3 MB | 最佳性能表现 |
C++ | DFS | 16 ms | 13.1 MB | 递归栈开销较小,性能最优 |
补充说明
代码亮点
- 两种方法都使用邻接表存储图结构,适合处理稀疏图
- 拓扑排序通过队列实现,高效处理入度为0的节点
- DFS使用三种状态标记节点,精确追踪访问状态
- C++和Python实现中使用了更高效的数据结构
图算法的应用
本题是典型的图论问题,涉及两个经典算法:
- 拓扑排序:用于找出有向无环图中的线性序列,可以应用于任务调度、编译依赖等场景
- 环检测:对有向图进行DFS,判断是否存在环路,常用于检测死锁、循环依赖等问题
在实际应用中,如课程安排、项目依赖管理、编译系统等都会用到此类算法。
常见错误
- 邻接表构建方向错误,导致依赖关系颠倒
- DFS中状态标记不清楚,无法正确检测环
- 拓扑排序中忘记更新入度,或入度计算错误
- 对于已访问节点的处理不当,导致重复工作