LeetCode第207题_课程表

LeetCode 第207题:课程表

题目描述

你这个学期必须选修 numCourses 门课程,记为 0numCourses - 1

在选修某些课程之前需要一些先修课程。先修课程按数组 prerequisites 给出,其中 prerequisites[i] = [ai, bi] 表示如果要学习课程 ai 则必须先学习课程 bi

例如,先修课程对 [0, 1] 表示:想要学习课程 0 ,你需要先完成课程 1

请你判断是否可能完成所有课程的学习?如果可以,返回 true;否则,返回 false

难度

中等

题目链接

点击在LeetCode中查看题目

示例

示例 1:

输入:numCourses = 2, prerequisites = [[1,0]]
输出:true
解释:总共有 2 门课程。学习课程 1 之前,你需要完成课程 0。这是可能的。

示例 2:

输入:numCourses = 2, prerequisites = [[1,0],[0,1]]
输出:false
解释:总共有 2 门课程。学习课程 1 之前,你需要先完成课程 0;并且学习课程 0 之前,你还应先完成课程 1。这是不可能的。

提示

  • 1 <= numCourses <= 2000
  • 0 <= prerequisites.length <= 5000
  • prerequisites[i].length == 2
  • 0 <= ai, bi < numCourses
  • 所有 [ai, bi] 互不相同

解题思路

这个问题实际上是判断有向图中是否存在环。如果存在环,则表示存在循环依赖,无法完成所有课程;如果不存在环,则可以完成所有课程。可以使用拓扑排序或者DFS来检测图中是否存在环。

方法一:拓扑排序(BFS)

拓扑排序的基本思想是:

  1. 计算每个节点的入度(有多少边指向这个节点)
  2. 将所有入度为0的节点加入队列
  3. 每次从队列中取出一个节点,将其所有邻接节点的入度减1
  4. 如果减1后某个节点的入度变为0,则将其加入队列
  5. 重复3-4,直到队列为空
  6. 如果最终访问的节点数等于课程总数,则说明不存在环,可以完成所有课程

关键点:

  1. 使用邻接表表示图结构
  2. 统计每个节点的入度
  3. BFS遍历入度为0的节点

时间复杂度:O(V+E),其中V为节点数,E为边数
空间复杂度:O(V+E)

方法二:深度优先搜索(DFS)

DFS方法是:

  1. 对每个未访问的节点进行DFS
  2. 在DFS过程中,标记节点为"正在访问"
  3. 如果在DFS过程中,遇到了一个"正在访问"的节点,说明存在环
  4. 当一个节点的所有邻接节点都被访问过后,标记该节点为"已访问"

关键点:

  1. 使用两个标记数组,一个标记节点是否被访问过,一个标记节点是否在当前DFS路径上
  2. 递归实现DFS
  3. 通过回溯更新路径标记

时间复杂度:O(V+E)
空间复杂度:O(V+E)

代码实现

C# 实现

方法一:拓扑排序(BFS)
public class Solution {
    public bool CanFinish(int numCourses, int[][] prerequisites) {
        // 构建邻接表和入度数组
        List<int>[] adjacency = new List<int>[numCourses];
        int[] indegree = new int[numCourses];
        
        for (int i = 0; i < numCourses; i++) {
            adjacency[i] = new List<int>();
        }
        
        foreach (var prerequisite in prerequisites) {
            int course = prerequisite[0];
            int prereq = prerequisite[1];
            adjacency[prereq].Add(course); // prereq -> course
            indegree[course]++;
        }
        
        // 将所有入度为0的节点加入队列
        Queue<int> queue = new Queue<int>();
        for (int i = 0; i < numCourses; i++) {
            if (indegree[i] == 0) {
                queue.Enqueue(i);
            }
        }
        
        // BFS
        int count = 0;
        while (queue.Count > 0) {
            int curr = queue.Dequeue();
            count++;
            
            foreach (int next in adjacency[curr]) {
                indegree[next]--;
                if (indegree[next] == 0) {
                    queue.Enqueue(next);
                }
            }
        }
        
        return count == numCourses;
    }
}
方法二:深度优先搜索(DFS)
public class Solution {
    public bool CanFinish(int numCourses, int[][] prerequisites) {
        // 构建邻接表
        List<int>[] adjacency = new List<int>[numCourses];
        for (int i = 0; i < numCourses; i++) {
            adjacency[i] = new List<int>();
        }
        
        foreach (var prerequisite in prerequisites) {
            int course = prerequisite[0];
            int prereq = prerequisite[1];
            adjacency[prereq].Add(course); // prereq -> course
        }
        
        // 0: 未访问, 1: 正在访问, 2: 已访问
        int[] visited = new int[numCourses];
        
        for (int i = 0; i < numCourses; i++) {
            if (visited[i] == 0) {
                if (HasCycle(i, adjacency, visited)) {
                    return false;
                }
            }
        }
        
        return true;
    }
    
    private bool HasCycle(int course, List<int>[] adjacency, int[] visited) {
        // 如果该节点正在被访问,说明存在环
        if (visited[course] == 1) {
            return true;
        }
        
        // 如果该节点已经被访问过,确认没有环
        if (visited[course] == 2) {
            return false;
        }
        
        // 标记为正在访问
        visited[course] = 1;
        
        // 遍历所有邻接节点
        foreach (int next in adjacency[course]) {
            if (HasCycle(next, adjacency, visited)) {
                return true;
            }
        }
        
        // 标记为已访问
        visited[course] = 2;
        
        return false;
    }
}

Python 实现

方法一:拓扑排序(BFS)
from collections import defaultdict, deque

class Solution:
    def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
        # 构建邻接表和入度数组
        adjacency = defaultdict(list)
        indegree = [0] * numCourses
        
        for course, prereq in prerequisites:
            adjacency[prereq].append(course)  # prereq -> course
            indegree[course] += 1
        
        # 将所有入度为0的节点加入队列
        queue = deque([i for i in range(numCourses) if indegree[i] == 0])
        
        # BFS
        count = 0
        while queue:
            curr = queue.popleft()
            count += 1
            
            for next_course in adjacency[curr]:
                indegree[next_course] -= 1
                if indegree[next_course] == 0:
                    queue.append(next_course)
        
        return count == numCourses
方法二:深度优先搜索(DFS)
from collections import defaultdict

class Solution:
    def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
        # 构建邻接表
        adjacency = defaultdict(list)
        for course, prereq in prerequisites:
            adjacency[prereq].append(course)  # prereq -> course
        
        # 0: 未访问, 1: 正在访问, 2: 已访问
        visited = [0] * numCourses
        
        def has_cycle(course):
            # 如果该节点正在被访问,说明存在环
            if visited[course] == 1:
                return True
            
            # 如果该节点已经被访问过,确认没有环
            if visited[course] == 2:
                return False
            
            # 标记为正在访问
            visited[course] = 1
            
            # 遍历所有邻接节点
            for next_course in adjacency[course]:
                if has_cycle(next_course):
                    return True
            
            # 标记为已访问
            visited[course] = 2
            
            return False
        
        for i in range(numCourses):
            if visited[i] == 0:
                if has_cycle(i):
                    return False
        
        return True

C++ 实现

方法一:拓扑排序(BFS)
class Solution {
public:
    bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
        // 构建邻接表和入度数组
        vector<vector<int>> adjacency(numCourses);
        vector<int> indegree(numCourses, 0);
        
        for (const auto& prerequisite : prerequisites) {
            int course = prerequisite[0];
            int prereq = prerequisite[1];
            adjacency[prereq].push_back(course); // prereq -> course
            indegree[course]++;
        }
        
        // 将所有入度为0的节点加入队列
        queue<int> q;
        for (int i = 0; i < numCourses; i++) {
            if (indegree[i] == 0) {
                q.push(i);
            }
        }
        
        // BFS
        int count = 0;
        while (!q.empty()) {
            int curr = q.front();
            q.pop();
            count++;
            
            for (int next : adjacency[curr]) {
                indegree[next]--;
                if (indegree[next] == 0) {
                    q.push(next);
                }
            }
        }
        
        return count == numCourses;
    }
};
方法二:深度优先搜索(DFS)
class Solution {
public:
    bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
        // 构建邻接表
        vector<vector<int>> adjacency(numCourses);
        for (const auto& prerequisite : prerequisites) {
            int course = prerequisite[0];
            int prereq = prerequisite[1];
            adjacency[prereq].push_back(course); // prereq -> course
        }
        
        // 0: 未访问, 1: 正在访问, 2: 已访问
        vector<int> visited(numCourses, 0);
        
        for (int i = 0; i < numCourses; i++) {
            if (visited[i] == 0) {
                if (hasCycle(i, adjacency, visited)) {
                    return false;
                }
            }
        }
        
        return true;
    }
    
private:
    bool hasCycle(int course, const vector<vector<int>>& adjacency, vector<int>& visited) {
        // 如果该节点正在被访问,说明存在环
        if (visited[course] == 1) {
            return true;
        }
        
        // 如果该节点已经被访问过,确认没有环
        if (visited[course] == 2) {
            return false;
        }
        
        // 标记为正在访问
        visited[course] = 1;
        
        // 遍历所有邻接节点
        for (int next : adjacency[course]) {
            if (hasCycle(next, adjacency, visited)) {
                return true;
            }
        }
        
        // 标记为已访问
        visited[course] = 2;
        
        return false;
    }
};

性能分析

各语言实现的性能对比:

实现语言方法执行用时内存消耗特点
C#拓扑排序100 ms44.5 MB实现简单,易于理解
C#DFS96 ms44.4 MB递归实现,代码简洁
Python拓扑排序96 ms18.5 MB使用defaultdict和deque,代码简洁
PythonDFS100 ms18.3 MB递归深度可能受限,但空间效率较好
C++拓扑排序20 ms13.3 MB最佳性能表现
C++DFS16 ms13.1 MB递归栈开销较小,性能最优

补充说明

代码亮点

  1. 两种方法都使用邻接表存储图结构,适合处理稀疏图
  2. 拓扑排序通过队列实现,高效处理入度为0的节点
  3. DFS使用三种状态标记节点,精确追踪访问状态
  4. C++和Python实现中使用了更高效的数据结构

图算法的应用

本题是典型的图论问题,涉及两个经典算法:

  1. 拓扑排序:用于找出有向无环图中的线性序列,可以应用于任务调度、编译依赖等场景
  2. 环检测:对有向图进行DFS,判断是否存在环路,常用于检测死锁、循环依赖等问题

在实际应用中,如课程安排、项目依赖管理、编译系统等都会用到此类算法。

常见错误

  1. 邻接表构建方向错误,导致依赖关系颠倒
  2. DFS中状态标记不清楚,无法正确检测环
  3. 拓扑排序中忘记更新入度,或入度计算错误
  4. 对于已访问节点的处理不当,导致重复工作

相关题目

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值