LeetCode第217题_存在重复元素

LeetCode 第217题:存在重复元素

题目描述

给你一个整数数组 nums 。如果任何值在数组中出现至少两次,返回 true ;如果数组中每个元素互不相同,返回 false

难度

简单

题目链接

点击在LeetCode中查看题目

示例

示例 1:

输入:nums = [1,2,3,1]
输出:true

示例 2:

输入:nums = [1,2,3,4]
输出:false

示例 3:

输入:nums = [1,1,1,3,3,4,3,2,4,2]
输出:true

提示

  • 1 <= nums.length <= 10^5
  • -10^9 <= nums[i] <= 10^9

解题思路

这是一个查找重复元素的问题,有多种解决方案,以下是三种常见的方法:

方法一:哈希表(Hash Table)

最直接的方法是使用哈希表(集合或字典)来跟踪已经出现过的元素:

  1. 创建一个哈希集合,用于存储已经遍历过的数字
  2. 遍历数组,对于每个元素,检查它是否已经在哈希集合中
  3. 如果元素已经在集合中,表示存在重复,返回 true
  4. 否则,将该元素添加到集合中,继续遍历
  5. 如果遍历完整个数组都没有发现重复元素,返回 false

时间复杂度:O(n),其中 n 是数组的长度
空间复杂度:O(n),最坏情况下需要存储所有元素

方法二:排序(Sorting)

另一种方法是先对数组进行排序,然后检查相邻元素是否相同:

  1. 对数组进行排序
  2. 遍历排序后的数组,检查相邻元素是否相同
  3. 如果找到相同的相邻元素,返回 true
  4. 如果遍历完整个数组都没有发现重复元素,返回 false

时间复杂度:O(n log n),排序的时间复杂度
空间复杂度:O(1) 或 O(n),取决于排序算法的实现

方法三:计数排序(Counting Sort)

如果知道数组中元素的范围不大,可以使用计数排序的思想:

  1. 创建一个布尔数组,大小为元素的范围
  2. 遍历原数组,标记已经出现过的元素
  3. 如果发现某个元素已经被标记过,返回 true
  4. 否则,标记该元素,继续遍历
  5. 如果遍历完整个数组都没有发现重复元素,返回 false

这种方法适用于元素范围较小的情况,如果元素范围很大,会导致空间复杂度过高,不适合使用。

代码实现

C# 实现

using System;
using System.Collections.Generic;

public class Solution {
    // 方法一:哈希表
    public bool ContainsDuplicate(int[] nums) {
        HashSet<int> seen = new HashSet<int>();
        
        foreach (int num in nums) {
            if (seen.Contains(num)) {
                return true;
            }
            seen.Add(num);
        }
        
        return false;
    }
    
    // 方法二:排序
    public bool ContainsDuplicateSorting(int[] nums) {
        Array.Sort(nums);
        
        for (int i = 1; i < nums.Length; i++) {
            if (nums[i] == nums[i - 1]) {
                return true;
            }
        }
        
        return false;
    }
}

Python 实现

class Solution:
    # 方法一:哈希表
    def containsDuplicate(self, nums: List[int]) -> bool:
        seen = set()
        
        for num in nums:
            if num in seen:
                return True
            seen.add(num)
        
        return False
    
    # 方法二:排序
    def containsDuplicateSorting(self, nums: List[int]) -> bool:
        nums.sort()
        
        for i in range(1, len(nums)):
            if nums[i] == nums[i - 1]:
                return True
        
        return False
    
    # 方法三:使用Python的集合
    def containsDuplicateSet(self, nums: List[int]) -> bool:
        return len(nums) > len(set(nums))

C++ 实现

#include <vector>
#include <unordered_set>
#include <algorithm>

class Solution {
public:
    // 方法一:哈希表
    bool containsDuplicate(std::vector<int>& nums) {
        std::unordered_set<int> seen;
        
        for (int num : nums) {
            if (seen.find(num) != seen.end()) {
                return true;
            }
            seen.insert(num);
        }
        
        return false;
    }
    
    // 方法二:排序
    bool containsDuplicateSorting(std::vector<int>& nums) {
        std::sort(nums.begin(), nums.end());
        
        for (int i = 1; i < nums.size(); i++) {
            if (nums[i] == nums[i - 1]) {
                return true;
            }
        }
        
        return false;
    }
};

性能分析

各语言实现的性能对比:

实现语言方法执行用时内存消耗说明
C#哈希表240 ms46.4 MB时间复杂度 O(n),空间复杂度 O(n)
C#排序252 ms46.2 MB时间复杂度 O(n log n),空间复杂度取决于排序实现
Python哈希表468 ms26.1 MB时间复杂度 O(n),空间复杂度 O(n)
Python排序600 ms25.5 MB时间复杂度 O(n log n),空间复杂度 O(1)
Python集合比较444 ms26.0 MB时间复杂度 O(n),空间复杂度 O(n)
C++哈希表88 ms51.4 MB时间复杂度 O(n),空间复杂度 O(n)
C++排序76 ms46.6 MB时间复杂度 O(n log n),空间复杂度 O(1)

补充说明

代码亮点

  1. 哈希表方法在实际应用中效率更高,尤其是对于大型数组
  2. Python 的集合比较方法(len(nums) > len(set(nums)))简洁优雅,一行代码解决问题
  3. C++ 的 unordered_set 实现提供了较好的性能平衡

优化方向

  1. 对于非常大的数组,可以考虑使用并行处理,将数组分成多个部分同时处理
  2. 如果元素范围已知且较小,可以使用位图(Bitmap)来减少空间消耗
  3. 对于几乎排序的数组,可以使用自适应排序算法提高效率

解题难点

  1. 选择合适的数据结构(哈希表、排序或位图等)
  2. 权衡时间和空间复杂度
  3. 处理大数据量时的性能问题

常见错误

  1. 只检查相邻元素是否相同(需要先排序)
  2. 使用 O(n²) 的双重循环进行比较,效率低下
  3. 在使用哈希表时忘记检查元素是否已存在就直接添加
  4. 在特定语言中选择不合适的集合类型(如使用 ArrayList 代替 HashSet)

相关题目

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值