内部排序--数据结构

一、基本概念

排序:将一个数据元素的任意序列重新排列成一个按关键词有序的序列。
稳定的排序:相等的数据元素在排序后相对的位置不变。
内部排序的分类:
插入排序:将无序子序列中的一个或几个记录插入到有序序列中,从而增加记录的有序子序列的长度。如直插排序、二分插入排序、希尔排序
交换排序:通过交换无序序列中的记录从而得到关键词最小或最大的记录,并将它加入到有序子序列中,以此方法增加记录的有序子序列的长度。如冒泡排序、快速排序。
选择排序:从记录的无序子序列中选择关键字最小或最大的记录,并将它加入到有序子序列中,一次增加记录的有序子序列的长度。如简单选择排序、树型排序、堆排序。
归并排序:通过归并两个或两个以上的记录有序子序列,逐步增加记录有序序列的长度。如二路归并排序、多路归并排序。
分配排序:如多关键字排序、基数排序。

二、插入排序

2.1 直接插入排序

直接插入排序的基本思想是:n个待排序的元素由一个有序表和一个无序表组成,开始时有序表只包含一个元素。排序过程中,每次从无需表中取出第一个元素,将其插入到有序表中的适当位置,是有序表的长度不断加长,完成排序过程。

#include <iostream>
using namespace std;

//直接插入排序
void InsertSort(int a[]) {
    for (int i = 1; i < 8; i++) {
        if (a[i] < a[i - 1]) {
            int temp = a[i];
            int j;
            for (j = i; j > 0; j--) {
                if (a[j-1] < temp)
                    break;
                a[j] = a[j-1];
            }
            a[j] = temp;
        }
    }
}

int main()
{
    int a[8] = { 34 ,12,49,28,31,52,51,49 };
    InsertSort(a);
    for (int i = 0; i < 8; i++) {
        cout << a[i] << " ";
    }
    cout << endl;
    return 0;
}

时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( 1 ) O(1) O(1)
稳定的排序方法。
适用情况:元素数目少,或者元素的初始数列基本有序。

2.1 其他插入排序

再寻找插入位置时采用二分查找,则称为折半插入排序;

#include <iostream>
using namespace std;

//折半插入排序
void two_InsertSort(int a[]) {
    for (int i = 1; i < 8; i++) {
        if (a[i] < a[i - 1]) {
            int temp = a[i];
            int low = 0, high = i - 1;
            while (low <= high) {
                int mid = (low + high) / 2;
                if (a[mid] < temp) {
                    low = mid + 1;
                }
                else
                    high = mid - 1;
            }
            int j;
            for (j = i; j > high+1; j--) {
                a[j] = a[j - 1];
            }
            a[j] = temp;
        }
    }
}
int main()
{
    int a[8] = { 34 ,12,49,28,31,52,51,49 };
    two_InsertSort(a);
    for (int i = 0; i < 8; i++) {
        cout << a[i] << " ";
    }
    cout << endl;
    return 0;
}
2.3 希尔排序

希尔排序也称为缩小增量排序,其改进原理主要基于一下两点:

  1. 元素基本有序时,直接插入排序的时间复杂度接近于 O ( n ) O(n) O(n)
  2. 元素数目n较少时,直接插入排序的效率较高。
    算法思想:先将整个待排序元素序列分割成若干个子序列(由相隔某个增量的元素组成),分别进行直接插入排序,待整个序列的元素基本有序(增量足够小)时,在对元素进行一次直接插入排序。
#include <iostream>
using namespace std;

//希尔排序
void shellSort(int a[], int dk) {
    for (int i = dk; i < 8; i++) {
        if (a[i] < a[i - dk]) {
            int temp = a[i], j;
            for (j = i; j > 0; j = j - dk) {
                if (a[j - dk] > temp) {
                    a[j] = a[j - dk];
                }
                else
                    break;
            }
            a[j] = temp;
        }
    }
}
int main()
{
    int a[8] = { 34 ,12,49,28,31,52,51,49 };
    //two_InsertSort(a);
    shellSort(a, 5);
    shellSort(a, 3);
    shellSort(a, 1);
    for (int i = 0; i < 8; i++) {
        cout << a[i] << " ";
    }
    cout << endl;
    return 0;
}

三、交换排序

3.1 冒泡排序

冒泡排序的基本思想是:将相邻位置的关键字进行比较,若为逆序则交换。

#include <iostream>
using namespace std;


//冒泡排序
void BubbleSort(int a[]) {
    bool change = true;
    for (int i = 0; i < 8 && change; i++) {
        change = false;
        for (int j = 0; j < 8 - i - 1; j++) {
            if (a[j] > a[j + 1]) {
                int temp = a[j];
                a[j] = a[j + 1];
                a[j + 1] = temp;
                change = true;
            }
        }
    }
}
int main()
{
    int a[8] = { 34 ,12,49,28,31,52,51,49 };
    //two_InsertSort(a);
    //shellSort(a, 5);
    //shellSort(a, 3);
    //shellSort(a, 1);
    BubbleSort(a);
    for (int i = 0; i < 8; i++) {
        cout << a[i] << " ";
    }
    cout << endl;
    return 0;
}

时间复杂度: O ( n 2 ) O(n^2) O(n2),在最好情况下(正序),元素的交换次数为0,比较次数为n-1;在最坏的情况下(逆序),元素的交换次数为 n ( n − 1 ) / 2 n(n-1)/2 n(n1)/2,比较次数为 ( n − 1 ) ( n − 2 ) / 2 (n-1)(n-2)/2 (n1)(n2)/2
空间复杂度: O ( 1 ) O(1) O(1),只需一个辅助单元进行交换。
稳定的排序方法
适用的情况:元素数目少,或者元素的初始序列基本有序。

3.2 快速排序

快速排序是迄今为止所有内部排序算法中速度最快的一种,其基本思想是:取待排序的序列中的某个元素作为基准(一般取第一个元素),通过一趟排序,将待排序元素分为左右两个子序列,左子序列元素的关键字均小于或等于基准元素的关键字,右子序列的关键字则大于基准元素的关键字,然后分别对两个子序列继续进行排序,直至整个序列有序。

#include <iostream>
using namespace std;


//快速排序
int Partition(int a[],int low,int high){
    int temp = a[low];
    int i = low, j = high;
    while (i < j) {
        while (i < j && a[j] >= temp)
            j--;
        a[i] = a[j];
        while (i < j && a[i] <= temp)
            i++;
        a[j] = a[i];
    }
    a[i] = temp;
    return i;
}
void QuickSort(int a[],int low,int high) {
    if (low < high) {
        int temp = Partition(a, low, high);
        QuickSort(a, low, temp - 1);
        QuickSort(a, temp + 1, high);
    }
}
int main()
{
    int a[8] = { 34 ,12,49,28,31,52,51,49 };
    //two_InsertSort(a);
    //shellSort(a, 5);
    //shellSort(a, 3);
    //shellSort(a, 1);
    //BubbleSort(a);
    QuickSort(a, 0, 7);
    for (int i = 0; i < 8; i++) {
        cout << a[i] << " ";
    }
    cout << endl;
    return 0;
}

时间复杂度:在最好情形下(左右两个区间的长度大致相等),则结点数n与二叉树深度h应满足 l o g 2 n < h < l o g 2 n + 1 log_2n<h<log_2n+1 log2n<h<log2n+1,所以总的比较次数不会超过 ( n + 1 ) l o g 2 n (n+1)log_2n (n+1)log2n。因此,快速排序的最好时间复杂度应为 O ( l o g 2 n ) O(log_2n) O(log2n)。理论上已经证明,快速排序的平均时间复杂度也为 O ( l o g 2 n ) O(log_2n) O(log2n)
空间复杂度: O ( l o g n ) O(logn) O(logn)
不稳定的排序方法,快速排序不适合对小规模的序列进行排序。

四、选择排序

4.1 简单选择排序

基本思想:第一趟在n个记录中选取最小记录作为有序序列的第一个记录,第二趟在n-1个记录中选取最小记录作为有序序列的第二个记录,第i趟在n-i+1个记录中选取最小的记录作为有序序列中的第i个记录。

#include <iostream>
using namespace std;

//简单选择排序
void SelectSort(int a[]) {
    for (int i = 0; i < 8; i++) {
        for (int j = i + 1; j < 8; j++) {
            if (a[j] < a[i]) {
                int temp = a[j];
                a[j] = a[i];
                a[i] = temp;
            }
        }
    }
}
int main()
{
    int a[8] = { 34 ,12,49,28,31,52,51,49 };
    //two_InsertSort(a);
    //shellSort(a, 5);
    //shellSort(a, 3);
    //shellSort(a, 1);
    //BubbleSort(a);
    //QuickSort(a, 0, 7);
    SelectSort(a);
    for (int i = 0; i < 8; i++) {
        cout << a[i] << " ";
    }
    cout << endl;
    return 0;
}

时间复杂度: O ( n 2 ) O(n^2) O(n2),在n个关键字中选出最小者,需要n-1次比较,继续在剩余n-1个元素中选出次小者需要n-2次比较,以此类推。
空间复杂度: O ( 1 ) O(1) O(1)
不稳定的排序方法,适合元素数目小,无需完全排序的情况,比如选出第i小的元素。

4.2 树形选择排序

又称锦标赛排序(Tournament Sort) :首先对n个记录的关键字两两进行比较,然后在n / 2个较小者之间再进行两两比较,如此重复,直至选出最小关键字的记录。选出最小记录后,将树中的该最小记录修改为∞,然后从该叶子结点所在子树开始,修改到达树根的路径上的结点。

4.3 堆排序

对于n个元素的序列 k 1 , k 2 , . . . , k n {k_1,k_2,...,k_n} k1,k2,...,kn,当且仅当满足以下关系时,称之为堆。
大顶堆: k i > = k 2 i a n d k i > = k 2 i + 1 k_i>=k_{2i} and k_i>=k_{2i+1} ki>=k2iandki>=k2i+1。或者,小顶堆 k i < = k 2 i a n d k i < = k 2 i + 1 k_i<=k_{2i} and k_i<=k_{2i+1} ki<=k2iandki<=k2i+1
堆排序:对一组待排序记录的关键字,首先把它们按堆的定义建成小(大)顶堆,然后输出堆顶的最小(大)关键字所代表的记录,再对剩余的关键字建堆,以便得到次小(大)的关键字,如此反复进行,直到全部关键字拍成有序序列为止。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhInen丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值