mongoDB大数据查询坑

有一个30亿量级数据的库,如何全量爬取并分析?

因为量级过大无法一次性爬取至本地再分析,考虑使用limit().skip()混合的方法,一次读取1万条数据进行分析存储,30亿数据分成30万份后再合并分析生成最后的结果。代码如下:

// i为跳跃条数,比如取第一个1万条时i为0,第二个1万条时i为1

db.getCollection("whois").find({}).limit(10000).skip(i*10000)

30个进程并发计算,一个进程负责1万份的量级。简单测试了下读取速度,非常快,几乎一秒读取数据,剩下的就是cpu本地计算的事儿了,预计8个小时完成,锁屏,下班。第二天来一看,发现了很奇怪的现象。

1.一天过去,数据只跑了2亿条左右。

2.大部分进程阻塞或者死掉。

3.前几个进程爬取的数据远远多于后面的进程,比如第一个进程的一万份数据基本上爬取完毕,第二个进程爬取了大半,第三个进程及以后非常的少甚至没有数据。

出现以上现象的原因:

skip不适用于大数据的查询搜索,数据量小的时候还可以,效率高,但是一但数据量达到一个层级(mongoDB本身提供的几十mb的内存限制)后,查询的算法会更改。比如查询limi(10000).skip(0),即前一万条数据,很快查询并返回,因为经历了很少的分页查询,但是一但你使用limit(10000).skip(1000000000),那么你会惊喜的发现查几天都出不来结果甚至直接查询失败。反复的查询数据提取到内存,一条条的数,看是否达到你想要条数,如果没有

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值