-
------------ 0. start from zero, the histry of lenna ----------------
-
The Lenna Story: http://www.cs.cmu.edu/~chuck/lennapg/lenna.shtml
-
------------ 1. the most frequently used ones ---------------------
-
Lena, Barbara, Boat, Fingerprint, House, Peppers
All of them (zipped, 928 kb)------------ 2. un-reorganized ones -------------------------------
- MIT CSAIL LabelMe, open annotation tool related tech report
WallFlower dataset: For evaluating background modelling algorithms. Ground-truth foreground provided.
Foreground/Background segmentation and Stereo dataset: from Microsoft Cambridge.
VISOR: Video Surveillance Online Repositiory: Lots of videos and ground truth.
3D Photography Dataset
Multi-model, multi-camera meeting room dataset
Advanced Video and Signal based Surveillance: a variety datasets for tracking and detection.
Caltech image collections: object detection, segmentation and classification
INRIA Datasets: Cars, people, horses, human actions, etc.
CAVIAR surveillance Dataset
Videos for Head Tracking
Pedestrian dataset from MIT
Shadow detection datasets
Flash and non-Flash dataset
Experiments on skin region detection and tracking: it includes a ground-truthed dataset
MIT Face Dataset
MIT Car Datasets
MIT Street Scenes: CBCL StreetScenes Challenge Framework is a collection of images, annotations, software and performance measures for object detection [cars, pedestrians, bicycles, buildings, trees, skies, roads, sidewalks, and stores]
LabelMe Dataset: Over 150,000 images with objects annotated and labelled.
MuHAVi: Multicamera Human Action Video DataA large body of human action video data using 8 cameras. Includes manually annotated silhouette data.
INRIA Xmas Motion Acquisition Sequences (IXMAS): Multiview dataset for view-invariant human action recognition.
i-LIDS datasets: UK Government benchmark datasets for automated surveillance.
The Daimler Pedestrian Detection Benchmark: contains 15,560 pedestrian and non-pedestrian samples (image cut-outs) and 6744 additional full images not containing pedestrians for bootstrapping. The test set contains more than 21,790 images with 56,492 pedestrian labels (fully visible or partially occluded), captured from a vehicle in urban traffic.
Stereo Pedestrian Detection Evaluation Dataset: a dataset for evaluating pedestrian detection using stereo camera images and video.
Colour video and Thermal infrared datasets: Dataset of videos in colour and thermal infrared. Videos are aligned temporally and spatially. Ground-truth for object tracking is provided.
Dataset lists
List of Databases: Includes multiple face datasets, texture datasets, etc.
UIUC Datasets: Includes... Fifteen Scene Categories, 3D Object Recognition Stereo Dataset, 3D Photography Dataset, Visual Datasets, Birds, Butterflies, Object Recognition Database, Texture Database and Video Sequences.
OTCBVS Datasets: Several datasets that include non-visual data, such as thermal infrared and NIR.
List of "emotional" databases:
=====================================================================
The USC-SIPI image database is a collection of digitized images. It is maintained primarily to support research in image processing, image analysis, and machine vision. The first edition of the USC-SIPI image database was distributed in 1977 and many new images have been added since then.
The database is divided into volumes based on the basic character of the pictures. Images in each volume are of various sizes such as 256x256 pixels, 512x512 pixels, or 1024x1024 pixels. All images are 8 bits/pixel for black and white images, 24 bits/pixel for color images. The following volumes are currently available:
| Textures | Brodatz textures, texture mosaics, etc. | |
| Aerials | High altitude aerial images | |
| Miscellaneous | Lena, the mandrill, and other favorites | |
| Sequences | Moving head, fly-overs, moving vehicles |
=====================================================================
南加州大学
USC-SIPI 图像测试库:
http://decsai.ugr.es/cvg/dbimagenes/
CMU 计算机视觉测试图像:
http://www.cs.cmu.edu/~cil/v-images.html
=====================================================================
|
本文介绍了多个经典的图像数据集,包括Lenna等常用图像,以及MIT CSAIL LabelMe等开放式注释工具相关的数据集。此外,还列举了一系列用于特定任务如背景建模、行人检测的数据集。

被折叠的 条评论
为什么被折叠?



