【备用】图像视频处理测试数据库大全--to be updated_拔剑-浆糊的传说_新浪博客...

本文介绍了多个经典的图像数据集,包括Lenna等常用图像,以及MIT CSAIL LabelMe等开放式注释工具相关的数据集。此外,还列举了一系列用于特定任务如背景建模、行人检测的数据集。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WallFlower dataset: For evaluating background modelling algorithms. Ground-truth foreground provided. 
Foreground/Background segmentation and Stereo dataset: from Microsoft Cambridge. 
VISOR: Video Surveillance Online Repositiory: Lots of videos and ground truth. 
3D Photography Dataset 
Multi-model, multi-camera meeting room dataset 
Advanced Video and Signal based Surveillance: a variety datasets for tracking and detection. 
Caltech image collections: object detection, segmentation and classification 
INRIA Datasets: Cars, people, horses, human actions, etc. 
CAVIAR surveillance Dataset 
Videos for Head Tracking 
Pedestrian dataset from MIT 
Shadow detection datasets 
Flash and non-Flash dataset 
Experiments on skin region detection and tracking: it includes a ground-truthed dataset 
MIT Face Dataset 
MIT Car Datasets 
MIT Street Scenes: CBCL StreetScenes Challenge Framework is a collection of images, annotations, software and performance measures for object detection [cars, pedestrians, bicycles, buildings, trees, skies, roads, sidewalks, and stores] 
LabelMe Dataset: Over 150,000 images with objects annotated and labelled. 
MuHAVi: Multicamera Human Action Video DataA large body of human action video data using 8 cameras. Includes manually annotated silhouette data. 
INRIA Xmas Motion Acquisition Sequences (IXMAS): Multiview dataset for view-invariant human action recognition. 
i-LIDS datasets: UK Government benchmark datasets for automated surveillance. 
The Daimler Pedestrian Detection Benchmark: contains 15,560 pedestrian and non-pedestrian samples (image cut-outs) and 6744 additional full images not containing pedestrians for bootstrapping. The test set contains more than 21,790 images with 56,492 pedestrian labels (fully visible or partially occluded), captured from a vehicle in urban traffic. 
Stereo Pedestrian Detection Evaluation Dataset: a dataset for evaluating pedestrian detection using stereo camera images and video. 
Colour video and Thermal infrared datasets: Dataset of videos in colour and thermal infrared. Videos are aligned temporally and spatially. Ground-truth for object tracking is provided. 

Dataset lists 
List of Databases: Includes multiple face datasets, texture datasets, etc. 
UIUC Datasets: Includes... Fifteen Scene Categories, 3D Object Recognition Stereo Dataset, 3D Photography Dataset, Visual Datasets, Birds, Butterflies, Object Recognition Database, Texture Database and Video Sequences. 
OTCBVS Datasets: Several datasets that include non-visual data, such as thermal infrared and NIR. 
List of "emotional" databases:


=====================================================================

The USC-SIPI Image Database

The USC-SIPI image database is a collection of digitized images. It is maintained primarily to support research in image processing, image analysis, and machine vision. The first edition of the USC-SIPI image database was distributed in 1977 and many new images have been added since then.

The database is divided into volumes based on the basic character of the pictures. Images in each volume are of various sizes such as 256x256 pixels, 512x512 pixels, or 1024x1024 pixels. All images are 8 bits/pixel for black and white images, 24 bits/pixel for color images. The following volumes are currently available:

 

TexturesBrodatz textures, texture mosaics, etc.
AerialsHigh altitude aerial images
MiscellaneousLena, the mandrill, and other favorites
SequencesMoving head, fly-overs, moving vehicles

=====================================================================

南加州大学 USC-SIPI 图像测试库: http://decsai.ugr.es/cvg/dbimagenes/
CMU 计算机视觉测试图像: http://www.cs.cmu.edu/~cil/v-images.html

=====================================================================




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值