标题: 马虎的算式
小明是个急性子,上小学的时候经常把老师写在黑板上的题目抄错了。
有一次,老师出的题目是:36 x 495 = ?
他却给抄成了:396 x 45 = ?
但结果却很戏剧性,他的答案竟然是对的!!
因为 36 * 495 = 396 * 45 = 17820
类似这样的巧合情况可能还有很多,比如:27 * 594 = 297 * 54
假设 a b c d e 代表1~9不同的5个数字(注意是各不相同的数字,且不含0)
能满足形如: ab * cde = adb * ce 这样的算式一共有多少种呢?
请你利用计算机的优势寻找所有的可能,并回答不同算式的种类数。
满足乘法交换律的算式计为不同的种类,所以答案肯定是个偶数。
答案直接通过浏览器提交。
注意:只提交一个表示最终统计种类数的数字,不要提交解答过程或其它多余的内容。
正确答案:142
传统的循环求解法:
public Main {
public static void main(String[] args) {
// TODO Auto-generated method stub
int a,b,c,d,e;
int sum=0;
for(int i=1;i<=9;i++){
for(int j=1;j<=9;j++){
if(i!=j){
a=i;
b=j;
for(int k=1;k<=9;k++){
for(int m=1;m<=9;m++){
for(int n=1;n<=9;n++){
if(k!=m&&k!=n&&m!=n&&k!=i&&m!=i&&n!=i&&k!=j&&m!=j&&n!=j){
c=k;
d=m;
e=n;
int t1=(a*10+b)*(c*100+d*10+e);
int t2=(a*100+d*10+b)*(c*10+e);
if(t1==t2) sum++;
}
}
}
}
}
}
}
System.out.println(sum);
}
}
深搜求解(类似于全排列):
public class Main {
static int ans = 0;
static int vis[][][][][] = new int[10][10][10][10][10];
public static void main(String[] args) {
int a[] = new int[10];
for(int i = 0; i < 10; i++){
a[i] = i;
}
arrange(a, 1, 9);
System.out.println(ans);
}
static void arrange(int A[], int start, int end) {
if (start == end) {
int a = A[1];
int b = A[2];
int c = A[3];
int d = A[4];
int e = A[5];
if(vis[a][b][c][d][e] == 1)return;
vis[a][b][c][d][e] = 1;
if((a* 10 + b)*(c * 100 + d * 10 + e) == (a * 100 + d * 10 + b) * (c * 10 + e)){
ans++;
}
return;
}
for (int i = start; i <= end; i++) {
swap(A, i, start);
arrange(A, start + 1, end);
swap(A, i, start);
}
}
static void swap(int arr[], int i, int j) {
int te = arr[i];
arr[i] = arr[j];
arr[j] = te;
}
}