假设有两种微生物 X 和 Y
X出生后每隔3分钟分裂一次(数目加倍),Y出生后每隔2分钟分裂一次(数目加倍)。
一个新出生的X,半分钟之后吃掉1个Y,并且,从此开始,每隔1分钟吃1个Y。
现在已知有新出生的 X=10, Y=89,求60分钟后Y的数目。
如果X=10,Y=90 呢?
本题的要求就是写出这两种初始条件下,60分钟后Y的数目。
题目的结果令你震惊吗?这不是简单的数字游戏!真实的生物圈有着同样脆弱的性质!也许因为你消灭的那只 Y 就是最终导致 Y 种群灭绝的最后一根稻草!
请忍住悲伤,把答案写在“解答.txt”中,不要写在这里!
X=10 Y=90 94371840
X=10 Y=89 0(-979369984)
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc=new Scanner(System.in);
int X=sc.nextInt();
int Y=sc.nextInt();
for(int i=1;i<=120;i++){//以半分钟为循环条件,60分钟120次循环
//6的倍数,即3分钟的倍数,每三分钟X分裂一次
if(i%6==0) X=X*2;
//4的倍数,即2分钟的倍数,没二分钟Y分裂一次
if(i%4==0) Y=Y*2;
//起始状态下,半分钟X吃一个Y,接下来每一分钟吃一个,即1 3 5 7.....
if(i%2==1) Y=Y-X;
}
System.out.println(Y);//如果Y小于0 ,即Y灭绝Y=0
}
}