- 博客(5)
- 收藏
- 关注
原创 机器学习(四)——逻辑斯蒂回归(Logistic Regression)
机器学习(四)——逻辑斯蒂回归(Logistic Regression)一、算法简介1.1 概念二、Logistic回归理论推导2.1 Logistic回归2.1.1 参数向量θ2.2 梯度上升算法一、算法简介1.1 概念Logistic回归是分类方法,它利用的是Sigmoid函数阈值在[0,1]这个特性。Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。其实,Logistic本质上是一个基于条件概率的判别模型(Discriminative Model)。
2021-02-19 17:16:36 2492 1
原创 机器学习(三)——朴素贝叶斯(Naive Bayesian)
机器学习(三)——朴素贝叶斯(Naive Bayesian)一、算法简介1.1 概念二、朴素贝叶斯理论2.1 条件概率2.2 全概率公式2.3 贝叶斯推断2.4 朴素贝叶斯推断三、动手实战——评论过滤器四、总结优点缺点一、算法简介1.1 概念决策树(Naive Bayesian)是朴素贝叶斯算法是有监督的学习算法,解决的是分类问题,如客户是否流失、是否值得投资、信用等级评定等多分类问题。二、朴素贝叶斯理论朴素贝叶斯是贝叶斯决策理论的一部分,所以在讲述朴素贝叶斯之前有必要快速了解一下贝叶斯决策理论。
2021-02-02 20:25:29 889
原创 机器学习(二)——决策树(DecisionTree)
机器学习(一)——决策树(DecisionTree)一、算法简介1.1 概念1.2 决策树基本构造步骤1.2.1 特征选择一、算法简介1.1 概念决策树(Dicision Tree)是一种基本的分类与回归方法。决策树模型是一种描述对实例进行分类的树形结构。决策树由结点(node)和有向边(directed edge)组成。结点由两种类型:内部结点(internal node)和叶节点(leaf node)。内部结点表示一个特征或属性,叶节点表示一个类。1.2 决策树基本构造步骤一般分三步:特征
2021-02-01 19:57:49 749
原创 python中while循环和for循环的区别
python中while循环和for循环的区别两者在使用过程中在某些情况下可相互替代,但是注意一点,两者的区别就是while循环适用于未知次数的循环,而for循环适用于已知次数的循环。下面举个小例子就能很好理解了。while循环更多的是循环执行程序以下这段代码表示while不断进行循环判断i是否为True,而是否结束取决于下面if判断语句。i = 0while True: if i<3: print(i) i += 1 else: print("i>
2020-11-26 16:03:05 1743
原创 数据分析案例之淘宝用户行为分析完整报告
一、项目背景UserBehavior为淘宝用户行为的数据集,数据集包括了2017年11月25日至2017年12月3日之间,有大约82万随机用户的用户行为(行为包括点击pv,购买buy,加购物车chart,收藏fav)数据。二、项目目标通过对用户行为的分析,主要实现下面两个目的:1、为客户提供更精准的隐式反馈,帮助用户更快速找到商品;2、为提高公司的交叉销售能力,提高转化率,销售额,提升公司业绩。三、分析思路主要从以下四个维度对用户行为进行分析和建议:1、用户行为间..
2020-05-28 14:06:37 10942 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人