自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 Linuxclone报错fatal: unable to access ‘https://xxxxxxxxxxx‘: Failed to connect to github.com port 443:

如果问题仍然存在,可能是系统级别设置了代理。你可以检查你的环境变量,看看是否有代理配置。首先,检查 Git 是否设置了代理。如果这些命令返回了代理设置,说明 Git 正在尝试通过代理连接。如果命令没有返回任何内容,说明代理已经被成功移除。

2024-09-12 10:06:55 261

原创 NSGA-II算法解析

多目标优化是涉及多个目标函数同时优化的数学问题。需要在两个或多个相互冲突的目标之间进行权衡的情况下作出最优决策。通俗易懂的解释是,假如现在有两个指标(a, b)去衡量事物的优越性,那么此时有a1​b1​a2​b2​a3​b3​当指标a1​好于a2​好于a3​b2​好于b1​好于b3​我们很清楚可以知道,实例3是最差的,但实例1和实例2分别有一个指标优于对方。

2024-03-10 22:02:41 1030

原创 动态网络相关

在训练的早期阶段,网络权重通常是随机初始化的,因此网络的预测可能会非常不准确。:通过逐渐增加IC输出在损失函数中的重要性,可以鼓励网络逐步学习更复杂的特征表示。随着训练的进行,网络已经构建了一个较为鲁棒的特征表示基础,逐渐增加IC输出的影响可以帮助细化这些表示而不会立即导致过拟合。通过调整IC输出的权重,可以进一步优化这些梯度的流动,确保网络的不同部分都能有效地学习。动态调整IC输出的权重可以作为一种调节机制,根据训练进度适时调整学习目标的重要性,从而激励网络持续优化和学习。

2024-03-04 16:08:05 387

原创 基础知识1

在训练模型时,对特征的有效控制有助于避免模型对训练数据的过度拟合,从而提高模型在新数据上的性能。L1 正则化通过在损失函数中添加参数权重的绝对值之和,惩罚模型中不重要的特征,使得一些特征的权重变为零。模型的复杂性与参数的数量相关,而减小特征数量可以减小模型的复杂性,从而降低过拟合的风险。是学习率衰减的因子。由于模型参数的数量与特征的数量相关,减少特征数量可以显著加快模型的训练速度。L2 正则化通过在损失函数中添加参数权重的平方之和,惩罚模型中权重的大小,使得模型对训练数据的变化更加鲁棒,避免权重过大。

2024-03-01 21:57:11 854

转载 CUDA out of memory.

此处,total_loss 正在整个训练循环中累积历史记录,因为 loss 是一个具有 autograd 历史记录的可微变量。不在 training loop 中积累历史记录。默认情况下,只保留涉及梯度的变量的计算。比如在在跟踪统计数据时,计算中的变量将超出的 training loop。可以通过以下方式修复此问题,改为。

2023-12-13 15:08:45 1231

原创 tensorflow model.fit()解读

例如({“x0”:x0,“x1”:x1},y)。namedtuple是不支持的数据类型,因为它的行为类似于有序数据类型(元组)和映射数据类型(dict)。例,给定namedtuple形式的namedtuple: (“example_tuple”,[“y”,“x”]),在解释值时是否反转元素的顺序是模糊的。更糟糕的是形式为namedtuple(“other_tuple”,[“x”,“y”,“z”])的元组,其中不清楚元组是打算解包为x、y和sample_weight,还是作为单个元素传递给x。

2023-09-07 21:59:50 1585

原创 ImportError: cannot import name ‘Concatenate‘ from ‘typing_extensions‘

虽然仍然像之前一样报错提示不兼容,但是可以跑。试过以下的两种方法,都不得行。

2023-09-05 21:25:56 1072

原创 Could not find a version that satisfies the requirement, No matching distribution found for XX

源只能使用这个豆瓣的,换其他源试了不行,先这样用。

2023-07-22 20:43:28 105

原创 本机连接服务器jupyter

本机连接服务器jupyter及常见问题

2023-03-01 19:39:16 129

原创 virtualbox安装增强功能开机黑屏

virtualbox安装增强功能后黑屏

2023-02-24 22:34:22 1942 3

原创 HashMap 总结

HashMap 是一个散列表,存储的内容是键值对(key-value)映射,实现了 Map 接口,根据键的 HashCode 值存储数据,具有很快的访问速度,最多允许一条记录的键为 null,不支持线程同步。其 key 与 value 类型可以不同。创建一个 HashMap 对象HashMap<String, String> Sites = new HashMap<Integer, String>();HashMap<Integer, String> exem

2022-03-03 18:42:50 262

原创 云计算与边缘计算协同服务的研究

云计算协同边缘计算服务模型中,将部分云中心的功能扩展到了网络边缘,由边缘节点处理边缘侧的数据,而非将所有数据上传到云端进行处理,在减少网络拥塞的同时降低时延,为终端设备提供更有效的服务。本文将对云计算和边缘计算的协同服务进行研究,对其服务方式、协同管理内容和意义、参考框架、特征、构建方式进行剖析。针对MEC的云边协同应用场景,将其分为本地分流子场景和网络能力开放子场景,并对两个子场景的云边协同内容做了详细分析和对比,并阐述了MEC的云边协同关键技术。同时对云计算与边缘计算协同服务目前存在的问题进行了总结和分

2020-09-14 16:46:55 4665

原创 hive启动Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient

hive启动Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient首先运行jps进入hive下bin目录启动hive首先运行jpskill掉进程Runjarkill -9 pid进入hive下bin目录hdfs dfsadmin -safemode leavehive --service metastore &启动hive./hive...

2020-06-20 12:19:35 184

原创 VM虚拟机开机/重启黑屏

安装了软件需要重启,重启之后出现了黑屏方法一cmd里面输下面这个netwh winsock reset方法二VM->Settings->Hardware->Display在右面的内容栏中将Accelerate 3D graphics取消打勾方法三编辑–>首选项–>设备–>启用虚拟打印机这个不行的话,好像就真的没啥办法了,祝各位好运...

2019-10-12 20:01:18 516

转载 Linux E: 无法获得锁 /var/lib/dpkg/lock-frontend - open (11: 资源暂时不可用)

Linux jdk安装问题 E: 无法获得锁 /var/lib/dpkg/lock-frontend - open (11: 资源暂时不可用)**下载jdk的时候,输完命令就这样了万能解决办法:ps -e|grep apt这出了点问题,但是不要紧再次键入原来的命令安装就可以了...

2019-10-09 20:03:51 198

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除