Tensorflow Object Detection API的使用(一)


前言

Anaconda + tensorflow-gpu使用Tensorflow Object Detection API

一、创建虚拟环境并激活

conda create -n tensorflow python=3.6

python=3.6指定python的版本
激活所创建的虚拟环境

activate tensorflow

删除虚拟环境

conda remove -n tensorflow -all

二、安装所使用的库

1.安装tensorflow

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --upgrade tensorflow-gpu==1.8

2.安装其他的库

pip install pillow
pip install lxml
pip install jupyter
pip install matplotlib
pip install pandas
pip install opencv_python
pip install keras==2.1.6 -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip install PyQt5 -i https://pypi.douban.com/simple  最后两个不用安装只是记录学习

删除某个库

pip uninstall name

三、安装Tensorflow Object Detection API

1.protoc是用来将API目录下的object_detection中的.proto文件转换为Python文件.py protoc下载3.4.0
2.下载好protoc-3.4.0-win32.zip文件后,解压后将bin目录下的protoc.exe文件拷贝到C:\Windows目录下
3.打开Anaconda Promt 定位到 下载好的models中 E:\models\research 文件夹下输入

protoc object_detection/protos/*.proto --python_out=.

在这里插入图片描述
没有报错就正确,此时可以看到E:\models\research\object_detection\protos文件夹下面.proto文件都转换出了对应的.py文件
在这里插入图片描述4.安装model和slim
anaconda prompt定位到E:\models\research下运行

python setup.py install

anaconda prompt定位到E:\models\research\slim下运行

python setup.py install

5在系统中新建系统变量,命名为PYTHONPATH,加入路径E:\models\research;E:\models\research\slim
在这里插入图片描述
6.在E:\models\research下运行命令

python object_detection/builders/model_builder_test.py

在这里插入图片描述
没有报错说明成功!

五、运行官方demo

定位到E:\models\research\object_detection目录下,运行命令jupyter notebook,在浏览器中打开链接。
在这里插入图片描述
打开ipynb文件,点击cell->Run all。等待一会,显示结果
在这里插入图片描述
Download Model部分可以注释掉节省时间。


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值