【leetcode】灯泡开关c++

题目描述:

初始时有 n 个灯泡处于关闭状态。第一轮,你将会打开所有灯泡。接下来的第二轮,你将会每两个灯泡关闭一个。

第三轮,你每三个灯泡就切换一个灯泡的开关(即,打开变关闭,关闭变打开)。第 i 轮,你每 i 个灯泡就切换一个灯泡的开关。直到第 n 轮,你只需要切换最后一个灯泡的开关。

找出并返回 n 轮后有多少个亮着的灯泡。

示例1:

输入:n = 3
输出:1
解释:
初始时, 灯泡状态 [关闭, 关闭, 关闭].
第一轮后, 灯泡状态 [开启, 开启, 开启].
第二轮后, 灯泡状态 [开启, 关闭, 开启].
第三轮后, 灯泡状态 [开启, 关闭, 关闭].
你应该返回 1,因为只有一个灯泡还亮着。

示例2:

输入:n = 0
输出:0

示例3:

输入:n = 1
输出:1

提示:

0 <= n <= 109

代码:

class Solution {
public:
    int bulbSwitch(int n) {
        int s=0;
        for(int i=0;i<n;i++){ 
            if(int(sqrt(i+1))*int(sqrt(i+1))==i+1)s=s+1;
        }
        return s;
    }
};

属于数论问题,用多层循环会超时。

第 i 次改变,会每隔 i 个灯泡就切换一次灯泡状态;即第 i 次操作时,会改变所有编号为 i 的倍数的灯泡的状态。

所以编号为 a 的灯泡,只要a是x的倍数,灯泡a就会在第x次被改变状态;即灯泡a会在a的约数次操作中被改变,一共被改变的次数为a的约数的个数

灯泡只有开和关两个状态,初始为关闭状态,则偶数次操作灯泡关闭,奇数次操作灯泡打开;即灯泡编号的约数的个数为奇数时,灯泡才亮起

除了完全平方数的约束个数为奇数其他数字的约数都是成双成对出现,均为偶数

对于灯泡1~n,判断 i 是否为完全平方数,若是则亮起的灯泡数+1
在这里插入图片描述
简化求完全平方数 代码:

class Solution {
public:
    int bulbSwitch(int n) {
        return int(sqrt(n));
    }
};

根据数论,数字1~n中,完全平方数的个数为根号n,返回sqrt(n)向下取整即可。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值