题目描述:
初始时有 n 个灯泡处于关闭状态。第一轮,你将会打开所有灯泡。接下来的第二轮,你将会每两个灯泡关闭一个。
第三轮,你每三个灯泡就切换一个灯泡的开关(即,打开变关闭,关闭变打开)。第 i 轮,你每 i 个灯泡就切换一个灯泡的开关。直到第 n 轮,你只需要切换最后一个灯泡的开关。
找出并返回 n 轮后有多少个亮着的灯泡。
示例1:
输入:n = 3
输出:1
解释:
初始时, 灯泡状态 [关闭, 关闭, 关闭].
第一轮后, 灯泡状态 [开启, 开启, 开启].
第二轮后, 灯泡状态 [开启, 关闭, 开启].
第三轮后, 灯泡状态 [开启, 关闭, 关闭].
你应该返回 1,因为只有一个灯泡还亮着。
示例2:
输入:n = 0
输出:0
示例3:
输入:n = 1
输出:1
提示:
0 <= n <= 109
代码:
class Solution {
public:
int bulbSwitch(int n) {
int s=0;
for(int i=0;i<n;i++){
if(int(sqrt(i+1))*int(sqrt(i+1))==i+1)s=s+1;
}
return s;
}
};
属于数论问题,用多层循环会超时。
第 i 次改变,会每隔 i 个灯泡就切换一次灯泡状态;即第 i 次操作时,会改变所有编号为 i 的倍数的灯泡的状态。
所以编号为 a 的灯泡,只要a是x的倍数,灯泡a就会在第x次被改变状态;即灯泡a会在a的约数次操作中被改变,一共被改变的次数为a的约数的个数。
灯泡只有开和关两个状态,初始为关闭状态,则偶数次操作灯泡关闭,奇数次操作灯泡打开;即灯泡编号的约数的个数为奇数时,灯泡才亮起。
而除了完全平方数的约束个数为奇数,其他数字的约数都是成双成对出现,均为偶数。
对于灯泡1~n,判断 i 是否为完全平方数,若是则亮起的灯泡数+1。
简化求完全平方数 代码:
class Solution {
public:
int bulbSwitch(int n) {
return int(sqrt(n));
}
};
根据数论,数字1~n中,完全平方数的个数为根号n,返回sqrt(n)向下取整即可。