DDT数据驱动

DDT是Data-DrivenTests的缩写,通过数据改变驱动自动化测试执行。在接口测试中,使用DDT可以提高代码复用率,避免重复编写测试用例。通常结合pytest的参数化功能和csv模块读取数据,如示例所示,实现测试数据与脚本的分离,提高测试效率和代码可维护性。
摘要由CSDN通过智能技术生成

一、DDT介绍
数据驱动思想:

数据和用例进行分离,通过外部数据去生成测试用例

适用场景:

进行接口测试时,每个接口的传参都不止一种情况,一般会考虑正向、逆向等多种组合。所以在测试一个接口时通常会编写多条case,而这些case除了传参不同外,没其他什么区别。这个时候就可以利用ddt来管理测试数据,提高代码复用率。

DDT:

“Data-Driven Tests”的缩写。数据驱动测试,就是说由数据的改变从而驱动自动化测试的执行,最终引起测试结果的改变。通过使用数据驱动测试的方法,可以在需要验证多组数据测试场景中,使用外部数据源实现对输入输出与期望值的参数化。也就是测试数据和用例脚本代码分离。

DDT作用:

通过使用数据驱动测试,一个测试逻辑可以供多条测试数据复用,代码复用率高,避免编写重复代码

数据与测试脚本分离,某条用例失败时不会影响其他测试用例,异常排查效率高

通常来说,多用于单元测试和接口测试。简洁明了的测试框架,利于其他同事阅读,代码的可维护性高。

使用csv模块读取csv文件,使用pytest参数化实现DDT

mport csv
import pytest
def get_data():
    with open('test.csv') as f:
        lst = csv.reader(f)
        my_data = []
        for row in lst:
            my_data.extend(row)
        return my_data

@pytest.mark.parametrize('name', get_data())
#会对遍历数据
def test01(name):
    print(name)

if __name__ == '__main__':
    #print(get_data())
    pytest.main(['-sv', 'test_csv.py'])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

土豆爱牛肉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值