一、DDT介绍
数据驱动思想:
数据和用例进行分离,通过外部数据去生成测试用例
适用场景:
进行接口测试时,每个接口的传参都不止一种情况,一般会考虑正向、逆向等多种组合。所以在测试一个接口时通常会编写多条case,而这些case除了传参不同外,没其他什么区别。这个时候就可以利用ddt来管理测试数据,提高代码复用率。
DDT:
“Data-Driven Tests”的缩写。数据驱动测试,就是说由数据的改变从而驱动自动化测试的执行,最终引起测试结果的改变。通过使用数据驱动测试的方法,可以在需要验证多组数据测试场景中,使用外部数据源实现对输入输出与期望值的参数化。也就是测试数据和用例脚本代码分离。
DDT作用:
通过使用数据驱动测试,一个测试逻辑可以供多条测试数据复用,代码复用率高,避免编写重复代码
数据与测试脚本分离,某条用例失败时不会影响其他测试用例,异常排查效率高
通常来说,多用于单元测试和接口测试。简洁明了的测试框架,利于其他同事阅读,代码的可维护性高。
使用csv模块读取csv文件,使用pytest参数化实现DDT
mport csv
import pytest
def get_data():
with open('test.csv') as f:
lst = csv.reader(f)
my_data = []
for row in lst:
my_data.extend(row)
return my_data
@pytest.mark.parametrize('name', get_data())
#会对遍历数据
def test01(name):
print(name)
if __name__ == '__main__':
#print(get_data())
pytest.main(['-sv', 'test_csv.py'])