- 博客(5)
- 收藏
- 关注

原创 CharTextCNN:使用字符级别的卷积神经网络来做文本分类任务
文章目录文章目录论文《**Character-level Convolutional Networks for Text Classification**》论文总览学习目标第一课:论文导读卷积神经网络的发展论文背景研究成果及意义研究成果研究意义第二课:论文精读摘要CharTextCNN模型卷积神经网络公式CharTextCNN Model实验结果分析论文总结代码实现文章目录论文《Character-level Convolutional Networks for Text Classification》
2020-10-19 22:05:02
1940
2
原创 TextCNN(二)
文章目录TextCNN1.论文结构2.TextCNN 结构模型的正则化3.实验结果与分析4.论文总结5.代码实现TextCNN1.论文结构2.TextCNN 结构TextCNN的结果不复杂,第一层是输入层把原始的词转换为向量表示,然后接下来是卷积提取不同层次的特征,并用的是Rule激活函数,池化层对卷积层的结果做Max pooling, 最后经过全连接和softmax进行输出得到句子的类别。具体的参数设置参考文献《A Sensitivity Analysis of (and Practitio
2020-10-14 20:11:45
670
原创 TextCNN(一)
文章目录论文《Glove: Global Vectors for Word Representation》论文导读1. 论文总览、学习目标2.论文背景a.深度学习的发展b.词向量的发展c.卷积神经网络的发展3.论文研究成果及意义研究成果小结小结# 文章目录论文《Glove: Global Vectors for Word Representation》论文导读1. 论文总览、学习目标总览、学习目标2.论文背景论文中提到的三个方面:a.深度学习的发展模型更复杂、精度提升巨大b.
2020-10-14 20:11:22
385
原创 读Glove论文笔记
文章目录1.Glove 背景介绍1.论文的背景知识2. 论文的研究成果3.Glove历史意义2.论文精度1.论文结构2. GloVe 模型3. 公式推导3. 实验结果分析4.论文总结1.关键点2.创新点3. 启发点1.关键点2.创新点3. 启发点1.Glove 背景介绍《Glove: Global Vectors for Word Representation》# 1.论文导读1.论文的背景知识词的表示方法矩阵分解方法(Matrix Factorization Methods)词共
2020-09-18 10:29:26
597
原创 Word2vec
文章目录研究背景前期知识储备学习目标论文储备知识论文导读论文背景知识研究成果研究意义论文总览介绍对比模型前馈神经网络语言模型(NNLM)语言模型困惑度和Loss得关系回顾网络模型循环神经网络语言模型(RNNLM)对比模型Log-linear modelword2ver 原理Skip-gramCBOW关键技术模型复杂度的概念基于前馈网络的语言模型的时间复杂度循环神经网络语言模型Skip-gramHierarchical复杂度Negative Sampling 复杂度CBOW 复杂度模型复杂度对比实验结果任务描
2020-09-16 21:48:56
798
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人