一 为什么要研究树结构
二 二叉树
三 二分搜索树
public class BST<E extends Comparable<E>> {
private class Node{
public E e;
public Node left, right;
public Node(E e){
this.e =e;
left = null;
right = null;
}
}
private Node root;
private int size;
public BST(){
root = null;
size = 0;
}
public int size(){
return size;
}
public boolean isEmpty(){
return size == 0;
}
public void add(E e){
if(root == null){
root = new Node(e);
size++;
}else
add(root, e);
}
//向以node为根的二分搜索树中插入元素e 递归算法
private void add(Node node, E e){
if(e.equals(node.e))
return;
else if(e.compareTo(node.e) < 0 && node.left == null ){ //因为不是基础类型必须用compateTo 来比较
node.left = new Node(e);
size++;
return;
}
else if(e.compareTo(node.e) > 0 && node.right == null ){ //因为不是基础类型必须用compateTo 来比较
node.right = new Node(e);
size++;
return;
}
//以上是递归结束条件
if(e.compareTo(node.e) < 0){
add(node.left, e);
}
else //>>0的情况
add(node.right,e);
}
}
第二种改进add方法
public class BST<E extends Comparable<E>> {
private class Node{
public E e;
public Node left, right;
public Node(E e){
this.e =e;
left = null;
right = null;
}
}
private Node root;
private int size;
public BST(){
root = null;
size = 0;
}
public int size(){
return size;
}
public boolean isEmpty(){
return size == 0;
}
public void add(E e){
add(root, e);
}
//向以node为根的二分搜索树中插入元素e 递归算法
private Node add(Node node, E e){ //新的递归解法: 把空看作也是一颗二叉树 如果递归是空的话 就给创建新节点给该节点复制
if(node == null){
size++;
return new Node(e);
}
//以上是递归结束条件
if(e.compareTo(node.e) < 0){
node.left = add(node.left, e);
}
else if (e.compareTo(node.e) > 0))//>>0的情况
node.right = add(node.right,e);
return node;
}
}
查询方法
//看以node为根的二分搜索树中是否包含元素e,递归算法
private boolean contains(Node node , E e){
if(node == null)
return false;
if(e.compareTo(node.e) ==0)
return true;
else if(e.compareTo(node.e) < 0)
return contains(node.left, e);
else
return contains(node.right, e);
}
}
前序遍历
//二分搜索树前序遍历
public void preOrder(){
preOrder(root);
}
private void preOrder(Node node){
if(node == null)
return;
System.out.println(node.e);
preOrder(node.left);
preOrder(node.right);
}
@Override
public String toString(){
StringBuilder res = new StringBuilder();
generateBSTString(root, 0, res);
return res.toString();
}
//生成以node为根节点,深度为de'pth的深度二叉树字符串
private void generateBSTString(Node node, int depth, StringBuilder res){
if(node == null){
res.append(generateDepthString(depth) + "null\n");
return;
}
res.append(generateDepthString(depth)+ node.e+ "\n");
generateBSTString(node.left, depth +1, res);
generateBSTString(node.right, depth +1, res);
}
private String generateDepthString(int depth){
StringBuilder res = new StringBuilder();
for(int i=0; i< depth; i++){
res.append("--");
}
return res.toString();
}
中序遍历后序遍历
//中序遍历
public void inOrder(){
inOrder(root);
}
private void inOrder(Node node){
if(node == null){
return;
}
inOrder(node.left);
System.out.println(node.e);
inOrder(node.right);
}
//后序遍历
public void postOrder(){
inOrder(root);
}
private void postOrder(Node node){
if(node == null)
return;
postOrder(node.left);
postOrder(node.right);
System.out.println(node.e);
}
前中后遍历每结束一个左右子树都回到根节点
前序遍历的非递归实现
//非递归实现前序遍历
public void preOrderNR(){
Stack<Node> stack = new Stack<>();
stack.push(root);
while(!stack.isEmpty()){
Node cur = stack.pop();
System.out.println(cur.e);
if(cur.right != null){
stack.push(cur.right);
}
if(cur.left != null){
stack.push(cur.left);
}
}
}
层序遍历实现
/层序遍历
public void levelOrder(){
Queue<Node> q = new LinkedList<>();
q.add(root);
while(!q.isEmpty()){
Node cur = q.remove();
System.out.println(cur.e);
if(cur.left != null)
q.add(cur.left);
if(cur.right != null)
q.add(cur.right);
}
}
深度优先遍历“从上往下按深度找
广度优先遍历:从左往右按层查找
删除二分搜索树中的元素
1)最大值和最小值
//寻找二分搜索树的最小元素
public E minimum(){
if(size == 0){
throw new IllegalArgumentException("BST is empty");
}
return minimum(root).e;
}
//返回以root为根的二分搜索树最小的节点
private Node minimum(Node node){
if(node.left == null)
return node;
return minimum(node.left); //此时相当于在操作一个链表 只向左走;
}
//寻找二分搜索树的最小元素
public E maxmum(){
if(size == 0){
throw new IllegalArgumentException("BST is empty");
}
return maxmum(root).e;
}
//返回以root为根的二分搜索树最小的节点
private Node maxmum(Node node){
if(node.right == null)
return node;
return maxmum(node.right); //此时相当于在操作一个链表 只向左走;
}