数据结构(四) 二分搜索树2

2 删二分搜索树中的最大最小元素

重点是考虑要删除节点的左孩子或者有孩子怎么连接到父节点

//删除最小值所在的节点
            public E removeMin(){
                E ret = minimum();
                root = removeMin(root);
                return ret;
            }
            //删除以node为根的二分搜索树的最小节点
            //返回删除节点后新的二分搜索树的根
            private Node removeMin(Node node){
                if(node.left == null){ //递归结束条件
                    Node rightNode = node.right;//保存node的右节点 为不为空都可以这么做
                    node.right = null;     //b
                    size--;
                    return rightNode;  //删除后保留下来
                 }
            node.left = removeMin(node.left);
            return node; //返回根节点node
    }

    //删除最大值所在的节点
    public E removeMax(){
        E ret = maxmum();
        root = removeMax(root);
        return ret;
    }
    //删除以node为根的二分搜索树的最大节点
    //返回删除节点后新的二分搜索树的根
    private Node removeMax(Node node){
        if(node.right == null){ //递归结束条件
            Node leftNode = node.left;//保存node的左节点 为不为空都可以这么做
            node.left = null;     //b
            size--;
            return leftNode;  //删除后保留下来
        }
        node.right = removeMax(node.right);
        return node; //返回根节点node
    }

3 二分搜索树删除节点

该节点的左孩子替代之

该节点的右孩子代替之

   

要让比该点大的最小值代替该节点 称为该节点的后继, 其实就是右子树的最小值

//从二分搜索树中删除元素ej节点
    private Node remove(Node node, E e){
        if(node == null)
            return null;
        if(e.compareTo(node.e) < 0){
            node.left = remove(node.left, e);
            return  node;
        }
        else if(e.compareTo(node.e) > 0){
            node.right = remove(node.right, e);
            return node;
        }
        else{  //e == node.e
            //左子树为空的情况
            if(node.left == null){
                Node rightNode = node.right;
                node.right = null;
                size--;
                return rightNode;
            }
            //右子树为空的情况
            if(node.right == null){
                Node leftNode = node.left;
                node.left = null;
                size--;
                return leftNode;
            }
            //左右子树均不为空
            //找到比该节点大的最小节点,右子树的最小节点
            //该节点代替这个节点的位置
            Node successor = minimum(node.right);
            successor.right = removeMin(node.right); //返回删除最小值后右子树的头节点
            size++;//本来removemin中删除的节点被保存在succerrsor 所以节点个数没编 但是remove内部调用size-- 要加回来
            successor.left = node.left;
            node.left = node.right = null;
            size--;
            return successor;

        }
    }

另一种实现方法

四 二分搜索树的特性

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值