题目描述
我们可以用2 * 1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2 * 1的小矩形无重叠地覆盖一个2 * n的大矩形,总共有多少种方法?
示例
n=3时,2*3的矩形块有3种覆盖方法。
解题思路
依然是斐波那契数列,首先考虑起始的情况:
当n=1时,只有一种覆盖方法;
当n=2时,可以全横或者全竖,有两种覆盖方法;
当n>2时,无非就是在之前的基础上摆放横块,或者摆放竖块,来形成新的2 * n矩形。也就是说,它可以是2*(n-1)的矩形增加一个竖块,或者是2*(n-2)的矩形增加两个横块来组成。
因此递推式为dp[n]=dp[n-1]+dp[n-2]。
Code
function rectCover(number)
{
// write code here
if(number==0) return 0;
let f=1,
g=2;
while(--number){
g+=f;
f=g-f;
}
return f;
}
运行环境:JavaScript (V8 6.0.0)
运行时间:14ms
占用内存:5440k