OpenCV - 模板匹配(Python实现)

本文介绍了OpenCV中的模板匹配原理,包括单对象和多对象的匹配方法。通过遍历图像并比较模板与图像区域的相似度,来寻找目标。OpenCV提供了6种匹配算法,从简单的平方差到复杂的相关系数法,不同方法在精度和计算量之间取得平衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原理

模板匹配是在一幅图像中寻找一个特定目标的方法之一,这种方法的原理非常简单,遍历图像中的每一个可能的位置,比较各处与模板是否“相似”,当相似度足够高时,就认为找到了我们的目标。OpenCV提供了6种模板匹配算法:

匹配算法method
平方差匹配法CV.TM_SQDIFF
归一化平方差匹配法CV.TM_SQDIFF_NORMED
相关匹配法CV.TM_CCORR
归一化相关匹配法CV.TM_CCORR_NORMED
相关系数匹配法CV.TM_CCOEFF
归一化相关系数匹配法CV.TM_CCOEFF_NORMED

通常来讲,随着从简单测量方法(平方差)到更复杂的测量方法(相关系数法),我们可以获得越来越准确的匹配。然而这同时也会以越来越大的计算量为代价。对于选取何种方法,针对不同的匹配情况进行对此分析比较,选取更适合自己应用场景同时兼顾速度和精度的最佳方案。

单对象模板匹配

import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('image.jpg',0)
img2 = img.copy()
template = cv2.imread('image_head.jpg',0)
w, h = template.shape[::-1]
# All the 6 methods for comparison in a list
methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR',
            'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
for meth in methods:
    img = img2.copy()
    #eval 语句用来计算存储在字符串中的有效 Python 表达式
    method = eval(meth)
    #模板匹配
    res = cv2.matchTemplate(img,template,method)
    #寻找最值
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
    # 使用不同的比较方法,对结果的解释不同
    
    if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
        top_left = min_loc
    else:
        top_left = max_loc
    bottom_right = (top_left[0] + w, top_left[1] + h)
    cv2.rectangle(img,top_left, bottom_right, 255, 2)
    plt.subplot(121),plt.imshow(res,cmap = 'gray')
    plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
    plt.subplot(122),plt.imshow(img,cmap = 'gray')
    plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
    plt.suptitle(meth)
    plt.show()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

多对象模板匹配

import cv2
import numpy as np
from matplotlib import pyplot as plt
img_rgb = cv2.imread('Coins.jpg')
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('Coin.jpg',0)
w, h = template.shape[::-1]
res = cv2.matchTemplate(img_gray,template,cv2.TM_CCOEFF_NORMED)
threshold = 0.4
loc = np.where( res >= threshold)
for pt in zip(*loc[::-1]):
    cv2.rectangle(img_rgb, pt, (pt[0] + w, pt[1] + h), (0,0,255), 1)
cv2.imshow("img",img_rgb)

在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值